
２０２２年度　東京大学　数学（理）
(;&(//1(7な高校生のための入試問題解説

　東京大学の入試問題を実際にその場で解くことを想定

して解説する。通常の解説本と何が違うかと言えば、解

法を見つけ出すまで、かなりの試行錯誤を繰り返すと思

うが、その解答に至るまでの思考の過程を中心に解説す

る。さらに、3\WKRQシリーズとしての本なので、プロ

グラムで解析が出来る箇所はプログラミングを試みる。

　難関大学の入試問題を解くとき、現役時代ならまるで

神の啓示でもあったかのように解き方が見えてきたが、

年齢を重ねるにつれてそのようなことはなくなってしま

った。さらに６題を続けて考えきる知力�体力もなくなっ

た。有名な解説本は、そのような啓示と知力�体力を持っ

ている人が書いていると思われる。しかし、この解法は

その場で思い付かないよな、というものも多く見受けら

れる。寧ろ、普通の人である著者の解説本の方が分かり

やすいのではないか、と自画自賛しながら書いている。

���　この問題は基本問題である。それ程難しいとは思わないが、微分�積分の基本的な計

算力を知ることができる良問と思う。少なくともこの大学に入りたい人は、この問題は解

けないといけないだろう。ポイントとして、関数の最大�最小の問題は、グラフの概形図

を描いて、その一番上の点の�\��座標が最大値で一番下の点の�\��座標が最小値である、と

いうことだけである。すなわち�\ I� 
[ �のグラフをまず描いてみようと思う。その為に

は、三角関数や対数関数が混在した特殊関数を微分できないといけない。さらにその微分

した結果を使って増減表を作ってグラフを描くが、増減表だけでも概形図は分かるので、

少なくとも増減表は書けないといけない。微分積分は数学Ⅱの教科書に始めて習い、その



ときは整関数（最大４次関数まで）までではあるが、微分積分の基本的な概念は教わる。

そして数学Ⅲになって、三角関数や対数関数などの特殊関数の微分積分に発展する。
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　次に、問題文の�\ I� 
[ �の中に積分の記号�' �
[

� 
FRVW ORJ � 
FRVW GW�があるが、それを�[��

で微分するとどうなるかは、数学Ⅱ（数研出版）の教科書に載っている。
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　定積分と微分法
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であり、そのときには�三角関数を合成しなければならない。ここで合成の復習をしよう。
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$　三角関数の合成

　加法定理を用いて， �DVLQK EFRVK �の形

の式を変形してみよう。

　座標�� 
D，E �である点を�3�とし，動径�

23�と�[�軸の正の向きとのなす角を�D�とす

る。また，線分�23�の長さを�U�とすると
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　 �DVLQK EFRVK �のこのような変形を��三角関数の合成��という。
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　以上が����の解答�解説であるが、解答としては僅か１０行、もう少し詳しく書いたとし

ても１５行ぐらいだと思う。ここの大学の入試問題としては簡単すぎやしないか、と不安

になる。もしかして、����[��
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�において　\ I� 
[ �は連続である、という証明も必要

なのかな、と考えたけど、�区間����[��
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いので連続である、としか言いようがないのではないかな、と思いやめた。が、もしかし
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�で連続を示すために、これを実際に積分をさ

せたいのかもしれない。しかし����を見ると、この積分をしないと値が出せそうにもない

ので、積分は�����で示すようにし、ここでは触れないことにした。
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　ここで�����でときに考えたようにJ� 
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FRVW GW�とおいて、積分をしてみ

ようと思う。これは部分積分を使う。部分積分は入試問題でよく出題されているので必須

項目である。それに関する教科書の内容を以下に示す。
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　部分積分法
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　両辺の不定積分を考えると，次の��部分積分法��の公式が成り立つ。
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※最初は（答）はもう少し綺麗になるかな、と思い、�ORJ  (�
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やってみたが、�ORJ � 
�(� � �とをまとめることが出来ず、結局上の形が一番いいかな、

ということで答えとした。実際の試験会場で私が受験生だったならば、この形ではかなり

不安な思いで答えを書いたであろう。

それでは、この本の趣旨でもある、この問題を3\WKRQを使って分析してみよう。

まず、答えが正しいかどうか、実際に3\WKRQで計算して確かめてみる。
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出力結果

全く同じ値が出力された。答えはあっている、と一応確認された。

さらに　驚くことに3\WKRQで積分もできる。それでは、J� 
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積分を、3\WKRQの6\P3\を使ったらどうなるのか、をプログラミングしてみる。
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仮に入試の答案に上の結果を導いた受験生がいたら○になるのだろうか、と疑問に思うが、

コンピュータでの出力結果は見づらいので、普通の表記に変換してみる。
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�　このように変換したとしても答案に書いて○になると思えない式である。これが正し

いかどうかは、先のプログラムで示したように二つの計算結果は等しいので正しいとしか

言えないだろう。それにしても3\WKRQ�のライブラリ6\P3\はすごいと実感した。どの

ようなアルゴリズムで積分しているのか、大いに興味深い内容であるが、今はこれを作っ

て無料で提供している天才に感謝するだけに留めよう。

　次に、この関数のグラフを描画するプログラムを作成してみる。
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この出力結果が次の図である。

最初に実行したときは、プログラムをミスったか、と思うぐらい平坦な特徴のないグラフ

である。でもよくよく見ると、確かに�[ 
S

�
のときに最小値を取っているのが分かる。

以上で第１問の解答�解説を終わる。



�����これは、�Q �P ���P ������………��のとき、� QD  �1���1 ������………�を示せばよい、

ということであり、この手の証明は数学的帰納法を使うのかな、と思う。

それでは、数学的帰納法の復習をしよう。数学Ｂの教科書に載っている。

���������������������「数学Ｂ（数研出版）」��������

数学的帰納法

$　�数学的帰納法による等式の証明

　数列�� �QD �において，初項� �D �と， ND �から �N �D �を求める規則とが与えられているとする

と，すべての自然数�Q�について， QD �を定めることができる。これと似た考え方によって，

自然数�Q�に関する等式や不等式がすべての自然数�Q�について成り立つことを証明する方

法がある。例えば，次の等式を証明してみよう。

　　　　　　　������……���Q 
��  �Q 　……�①

� �� 　Q ��のとき　　①�の左辺 �，　　①�の右辺 
��  �

　よって，Q ��のとき，①�は成り立つ。

� �� 　Q N�のとき�①�が成り立つ，すなわち

　　　　　　　������……���N 
��  �N 　……�②

　と仮定する。この仮定のもとに�Q N���の場合を考えると，②�から

　　　　①�の左辺 ������……���N 
�� ����N 
�� ���

　　　　　　　　� �N ����N 
�� ���  �N ��N���

　�　　　　　　　 �
� 
�N �  ①�の右辺�

　よって，Q N���のときにも�①�が成り立つことがわかる。

　� �� �から，Q ��のとき�①�は成り立つ。このことと�� �� �から，Q ����

すなわち�Q ��のときにも�①�は成り立つ。



　更に，Q ��のとき�①�が成り立つことと�� �� �から，Q ����すなわち�

Q ��のときにも�①�は成り立つ。

　同様に�Q �，�，�，……��のときにも�①�は成り立ち，結局すべての自

然数�Q�について�①�は成り立つ。

　上に述べたような証明法を��数学的帰納法��という。

���������������������「数学Ｂ（数研出版）」からの引用���

それではこの数学的帰納法を使って、����を解いてみよう。

［結論］Q �P ���P ������…��のとき、� QD  �1���1 ������…���………①が成り立つ

［証明］

>�@�P ��のとき、�Q ��となり、� �D  �、� �Q �D  �
QD ���から

　　　　　　　　　　　　　���　� �D  
�� �� ��

　　　　　　　　　　　　　���　� �D  
�� �� �　となり①は成り立つ。

>�@�P N�のとき、��Q �N�となり、 �ND  �1����1 ������…���が成り立つと仮定する。

　　　　　　　　　　　　　　　� ��N �D  �
�ND ���

　　　　　　　　　　　　　　　　　�� �� �1 ���

　　　　　　　　　　　　　　　� ��N �D  �
��N �D ���

　　　　　　　　　　　　　　　　　�� �
� 
��� �1 � ��

　　　　　　　　ここで� �
� 
��� �1 �  ��� �1 ��� �1 �� �1 ����とおくと

　　　　　　　　　　　　　　　� ��N �D  �1 ����

　　　　　　　　　　　　　　　� ��N �D  �
��N �D ���

　　　　　　　　　　　　　　　　　�� �
� 
��1 � � ��

　　　　　　　　　　　　　　　　　�� �� �1 � ���1 ����

�　　　　　　　　　　　　　　　　　�� �1 ���

　�　以上よりP N���のときも� ��N �D  �1 ���となって①は成り立つ。

　>�@�>�@�から数学的帰納法によって、すべての自然数�Q�について①は成り立つ。　W

　�以上が����の解答�解説であるが、これも解けなければならない問題だろう。しかし、何

を期待して作った問題なのか、この段階ではまだ分からない。

�����この問題は全くとらえどころがない。�

　 QD �が� ND �の倍数となる、ということは� QD ! ND �であり、これを添字�Q、�N�の関係にしな

いといけない。つまり、�Q!N�ということであるから、�Q N�O�とはなるだろう。これ

と漸化式� �Q �D  �
QD ���との両方をじっと見る。ここで、私の思考過程を示す。

�N �D  �
ND ���より� �N �D �を� ND �で割った余りは１、すなわち� �D �である。

次に�、 �N �D  �
�N �D ���であり、� �N �D �を� ND �で割った余りを考える。



ここで、数学Ａで習った商と余りの関係（合同式）を思い出した。

���������������������「数学Ａ（数研出版）」��������

研究　割り算の余りの性質

　一般に，P�を正の整数とし，��つの整数�D，E�を�P�で割ったときの余

１　D�E �を�P�で割った余りは，U�U ��を�P�で割った余りに等しい。

２　D�E �を�P�で割った余りは，U�U ��を�P�で割った余りに等しい。

３　DE�を�P�で割った余りは，UU ��を�P�で割った余りに等しい。

４　 ND �を�P �で割った余りは， NU �を�P �で割った余りに等しい。

りを，それぞれ�U，U ��とすると，次のことが成り立つ。

例��　 ����� �を���で割った余りを求める。

　　　���を���で割った余りは���である。

　　　よって， ����� �を���で割った余りは， ���� �を���で割った余りに等し

　　　い。したがって， ����� �を���で割った余りは���である。　

���������������������「数学Ａ（数研出版）」からの引用���

　つまり、� �N �D  �
�N �D ���なので、� �N �D �を� ND �で割った余りは�

�
�D ���となる。さらに�

�N �D  �
�N �D ���で、� �N �D �を� ND �で割った余りは�

�
� 
���D � ���になるが、展開しても綺麗

には当然ならない。これを繰り返したら訳分からなくなってしまうのは一目瞭然である。

かなり悩んだ。果たしてどうするか。試験会場だったらかなり焦るだろう。

　そのとき、�漸化式から �
�D �� �D となることにふっと気付いた。�これならいける、と

確信した。つまり、次の余りは� �
�D �� �D �となり、�これを繰り返すと少なくとも余りは

� PD �の形になる。�これで解けた、と嬉しくなった。つまり、� �N �D �を� ND �で割った余りは�

�D 、� �N �D �を� ND �で割った余りは� �D 、これを繰り返すと、� �N OD �を� ND �で割った余りは� OD �に

なると予想される。

　要するに、�Q N�O�とおくと、� QD �を� ND �で割った余りは� OD �………①となる。これは、

数学的帰納法で証明すべきであるが、ここでは割愛する。

　このことから、� QD �が� ND �の倍数になるためには�、 ND �で割った余り� OD �が�０または� ND �の

倍数にならなければならない、ということである。つまり�Q �N N�N�のとき、� ND �で

割った余り�は ND となるので、� QD �が� ND �の倍数になる。次に�Q �N N��N�のとき、� ND �

で割った余り� �ND �となり、さらに� �ND �を� ND �で割った余りは ND となるので、� QD �が� ND �の倍

数になる。

　これを繰り返すと、�Q�が�N�の倍数のとき、 QD �は� ND �の倍数になる。

これも数学的帰納法で証明が必要かもしれないけど、出題者はそこまで要求していないの

ではないか、と勝手な判断をして先に進める。



　次に、� QD �が� ND �の倍数のとき�、�Q�が�N�の倍数�になることを示すが、これは対偶を使っ

て証明する。つまり、�Q�が�N�の倍数�でないならば、� QD �が� ND �の倍数にはならない、を示

す。

　�Q�が�N�の倍数�ではないので、Q N�O�とおくと�O�は�N�で割り切れなく、その余りを�U�

とおくと、①より� �N OD �を� ND �で割った余りは�最終的に UD �となる。���U�N�なので、

��� UD � ND �となり、� QD �は� ND �の倍数にはならない。よって、�この対偶である「 QD �が� ND �

の倍数のとき�、�Q�が�N�の倍数となる」は成り立つ。

　以上より、� QD �が� ND �の倍数になる必要十分条件は、�Q�が�N�の倍数になることである。

　かなり苦しい答案になってしまった。合同式を使えばすっきりとしたものに書き換えら

れるかな、と考えたが、結局、合同式を駆使した答案は、何が言いたいのか分からなくな

るのでは、と思いやめた。もし私が実際に試験会場で受けたならば、上のような答案とし

て提出するだろう。でも、果たして何点になるのだろうか。完璧ではないが、少なくとも

間違ってはいないと思う。

����　���� ��������なので�、まず����から� ����D �を� ����D �に割った余りは� �D �となる。���

から� �D  ��である。要するに� ����D  ����D ･T�����T��は自然数�………①�となる。また、�

�����は���の倍数なので、����から� ����D �は���の倍数となる。これから①の右辺は�で括りだ

せるので� ����D �は���の倍数となる。さらに����� �� ･��･���、����� �･�･����なので、����

から� ����D �と� ����D �との共通の素因数は� �D  ��だけである。

　ここで、����の証明の中で、� ��N �D  �
��N �D ���

　　　　　　　　　　　　　　　　 �
� 
��1 � � ��

　　　　　　　　　　　　　　　　 �� �1 � ���1 ����

とあるが、これは、正の整数�Q�が３の倍数のとき、� QD �は���の倍数となるが、����の倍数

にはならないことも示している。

よって、� ����D �と �
� 
����D �の共通の素因数は���だけであり、その最大公約数は���である。

以上で第２問の解答解説は終わる。次にS\WKRQで分析してみる。

　� �D  ��　 �Q �D  �
QD ���だけを使って� ����D �と� ����D �の値を求めようかな、と最初は思っ

たが、当然ながら値が莫大な数になって、数時間プログラムを流しても出力されないだろ

うと予想される。それで下のプログラムでの処理時間を測ってみた。ちなみに、私のパソ

コンは、:LQGRZV��（�&25(�L�）�でちょっと前のものである。

���������������������WRN\RB��B��B12�����������

LPSRUW�PDWK

IURP�WLPH�LPSRUW�WLPH



GHI�VSHHGBIXQF�N��

�Q �D  �
QD ���の漸化式を使って、� �D  ��か

ら初めて、実行時に入力された�M�の値まで繰

り返し計算し、それをリスト�D�に追加するメ

インプロセス

����VWDUW� �WLPH��

����D >@

����M �

����D�DSSHQG���

����IRU�L�LQ�UDQJH���N����

��������D�DSSHQG�M�

��������M �M
M���

����ODSBWLPH� �WLPH�����VWDUW

����UHWXUQ�ODSBWLPH

ZKLOH�7UXH�

����WU\�

��������M LQW�LQSXW��M ����

��������EUHDN

����H[FHSW�9DOXH(UURU�

��������SULQW��整数を入力��

IRU�N�LQ�UDQJH�M����

����WLPHBD� �VSHHGBIXQF�N�

����SULQW�I
D>^N�G`@の処理時間は^WLPHBD���I`秒です
�

����������������������S\WKRQ�SURJUDP���������

　このプログラムの出力結果の途中までを表示したのが下である。� ��D �のときで������秒、

これは約８分��秒。これをもし� ����D �まで計算したらどのぐらいかかのるだろうか。しょ

D>��@の処理時間は�����秒です

D>��@の処理時間は�����秒です

D>��@の処理時間は�����秒です

D>��@の処理時間は�����秒です

D>��@の処理時間は������秒です

D>��@の処理時間は������秒です

D>��@の処理時間は�������秒です

D>��@の処理時間は�������秒です�

っと計算してみたくなった。� ��D �に�������秒掛かっていて、それから約３倍で次の� ��D �の

処理時間������秒となる。これから� ����D までに掛か

る時間は�約�����･
����� �秒になる。これが約何年にな

るのか、3\WKRQを使って計算してみよう。まず、

近似値をとって整数にする。小数のままだと、オー

バーフローしてしまうから整数にする。

������･
����� ��･

����� �秒は約何年になるのか計算する。

すると約� ����� �年である。

� ���� �が���兆になるので、少なくとも私、いや高校生

も含めて私たちが生きている間には計算は終わらな

い、ということである。このような問題に興味を持った([FHOOHQWな高校生がいたなら、

是非とも�3
13 �予想という未解決問題を勉強して、���万ドルの懸賞金をゲットしてほ

しい。



　次に、少なくと� ����D �を���で割った余りが���になることを3\WKRQを使って検証してみ

よう。先に述べたように実際に� ����D �の値は計算が出来ない。その為には、数学の手法を

使って余りだけを使って計算してみよう。

�Q �D  �
QD ���なので、� QD �を���で割った余りを�U�とおくと、� �Q �D �を���で割った

余りは� �U ���を���で割った余りに等しい。

これを使って下記のようなプログラムを作成した。

���������������������WRN\RB��B��B12�����������

ZKLOH�7UXH�

����WU\�

��������N LQW�LQSXW��第何項までですか。N ���

��������T LQW�LQSXW��割る数は何ですか。T ����

��������EUHDN

����H[FHSW�9DOXH(UURU�

��������SULQW��整数を入力��

M �

IRU�L�LQ�UDQJH���N����

����SULQW�I
D>^L�G`@�を�^T�G`�で割った余りは�^M�G`
�

����M �M
M����T

����������������������S\WKRQ�SURJUDP���������

このプログラムの実行し、第������項までを���で割った余りとして、その出力結果の最後

だけ表示したのが左図で、����で割った余りを表示したのが右図である

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を���で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは��

D>����@�を����で割った余りは���

この結果から、まず� ����D �は���で割り切れるが����では割り切れない。次に、� ����D �も同じ

ように検証すると� ����D �は���で割り切れるが����では割り切れないことが分かった。



　次に�����の検証を�してみたいと思う。�Q�が�N�の倍数になる、ならば、� QD �は� ND �の倍数

になる。その逆も成り立つ、というのをどうやって検証すればよいのだろうか、と頭を悩

ます。少なくとも� �Q �D  �
QD ���を使って具体的に� QD �の値を求めないと検証が出来ない

が、先ほど述べたように ��D �、つまり����個ぐらいまでが、値を短時間で求められて使え

る限界ということである。という�ことは、����ぐらいのまでの数で検証するプログラムを

まず作ってみよう思う。それを以下に示す。その出力結果を全てをここに載せるには紙面

の無駄使いと思ったので、今回は����と����と����を使うことにした。他の数は、皆様が是

非ともプログラムをコピーして実行してほしい。ちょっとした驚きがあると思う。コンピ

ュータが自由に使えなかった時代では、このような検証も高価なものだったのだろう。そ

んな検証をしなくたって、数学的に証明されたんだから無意味じゃないかな、と言われて

コンピュータの使用は断られたのだろう。でも、証明したものが目で見えるという経験も

ある種の驚きがあって必要と思うが、どうだろうか。今は自由にコンピュータが使えて幸

せである。が、もっと高度な内容で、今度はスーパーコンピュータを使いたい人もいるこ

とだろう。使用料がたとえ高価なものでも、そういう人たちに気軽に使えるような研究�

設備を是非とも提供してほしいものである、と未来の日本の発展を夢見る人のぼやきが入

ってしまったが、先に進めよう。

検証内容

��D �は� �D �、� �D �、 �D 、� �D 、 �D �、 ��D �の値では割りきれるが、それ以外では余りがある。

��D �は� �D �、 �D 、 �D 、 ��D �の値では割りきれるが、それ以外では余りがある。

��D �は� �D �、 �D 、 �D 、 �D �、 �D 、 ��D �の値では割りきれるが、それ以外では余りがある。

というものを検証してみる。その為に次のようなプログラムを作成した。

���������������������WRN\RB��B��B12�����������

ZKLOH�7UXH�

����WU\�

��������N LQW�LQSXW��第何項を調べますか。N ���

��������EUHDN

����H[FHSW�9DOXH(UURU�

��������SULQW��整数を入力��

D >@

M �

D�DSSHQG���

IRU�L�LQ�UDQJH���N����

����D�DSSHQG�M�

����M �M
M���

IRU�L�LQ�UDQJH���N����

����SULQW�I
D>^N�G`@�を�D>^L�G`@�で割った余りは�^D>N@�D>L@�G`
�



����������������������S\WKRQ�SURJUDP���������

第何項を調べますか。N ��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは����

D>��@�を�D>�@�で割った余りは���

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

第何項を調べますか。N ��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは�������������

D>��@�を�D>�@�で割った余りは�������

D>��@�を�D>��@�で割った余りは����

D>��@�を�D>��@�で割った余りは���

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

第何項を調べますか。N ��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは���

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>�@�で割った余りは��

D>��@�を�D>��@�で割った余りは������������������������

D>��@�を�D>��@�で割った余りは�������������

D>��@�を�D>��@�で割った余りは�������

D>��@�を�D>��@�で割った余りは����

D>��@�を�D>��@�で割った余りは���

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは��

D>��@�を�D>��@�で割った余りは���

［出力］

�����������������������������������������������������������������������������������������������������������余りが���の添え字は元の添え

　　　　　　　　　　　　　　　　　　　　　　　　　　字の約数になっているのが確認

　　　　　　　　　　　　　　　　　　　　　　　　　　できる。つまり、�Q�が�N�の倍

　　　　　　　　　　　　　　　　　　　　　　　　　　数になる、ならば、� QD �は� ND �

　　　　　　　　　　　　　　　　　　　　　　　　　　の倍数になる、が見て分かる。

　　　　　　　　　　　　　　　　　　　　　　　　　　　さらに、�Q�が�N�の倍数にな

　　　　　　　　　　　　　　　　　　　　　　　　　　らない、ならば、� QD �は� ND �の

　　　　　　　　　　　　　　　　　　　　　　　　　　倍数にはならない、というのも

　　　　　　　　　　　　　　　　　　　　　　　　　　確認できる。すなわち、この対

　　　　　　　　　　　　　　　　　　　　　　　　　　偶である、� QD �が� ND �の倍数に

　　　　　　　　　　　　　　　　　　　　　　　　　　なる、ならば、�Q�が�N�の倍数

　　　　　　　　　　　　　　　　　　　　　　　　　　になる、も確認できる。すなわ

　　　　　　　　　　　　　　　　　　　　　　　　　　ち����の証明が実際目で見えた

　　　　　　　　　　　　　　　　　　　　　　　　　　形になって表れた、ということ

　　　　　　　　　　　　　　　　　　　　　　　　　　である。

　　　　　　　　　　　　　　　　　　　　　　　　　　　この結果が出力されたとき、

　　　　　　　　　　　　　　　　　　　　　　　　　　すごい問題を創ったものだ、と

　　　　　　　　　　　　　　　　　　　　　　　　　　感動し問題を作成された方に敬

意を表したい気持ちで一杯になった。漸化式� �Q �D  �
QD ���は非常に面白い数列である。

以上で、第２問の解答�解説は終わる。



　この問題は、まず書いている内容を理解して図に描くことができるか、というものと思

う。それにしても����は簡単過ぎるが、高校１年生に解かせて、おっ、東大の問題を解け

たんじゃないか、すごいね、と自信を付けさせるのも一つの手だろう。第１問から第３問

までの����の小問は簡単である。今までは、����の意味を理解するのが難しく、それが解け

れば�����、����と流れるように解けるのが普通だった気がする。それがこのような形に変わ

ったのは、基礎�基本の力を重視していたセンター試験から、応用力を試している共通テ

ストに移行したので、個別試験（２次試験）で基礎力を見ているのだろうか、と穿った見

方をしてしまう。それでは����の解答�解説を始めよう。

����点�6�� 
�[ ��� �\ �、点�7�� 
�[ ��� �\ �に対し、点�6�が点�7�から十分離れているとは、

　　� �[ � �[ ���　または　� �\ � �\ ���　であるが、「または」という論理記号は勘違

いが多い。このときは、この否定を考えた方がよいだろう。



���������������������「数学Ⅰ（数研出版）」��������

　$�%，$�%�の補集合について，次の法則が成り立つ。

ド・モルガンの法則

　　　　　　　$�% $�%，　$�% $�%

���������������������「数学Ⅰ（数研出版）」からの引用���

要するに、点�6�が点�7�から十分離れていないとは、� �[ � �[ ���　かつ�　 �\ � �\ ���

このことを頭に置きながら、問題文を図に描いてみる。

[�

�\

�2 � � �

�

�

�

$

%

3�

3�

(� �

　条件を満たす点�3�の動く範囲は、右図の

点� �3 �から点� �3 �の範囲である。

　よって　���D�(� �………（答）　

[�

�\

�2 � � �

�

�

�

$

%

3�

(� �
[�

�\

�2 � � �

�

�

�

$

%

3�

3�

(� �

[�

�\

�2 � � �

�

�

�

$

%

3�

3�

(� �(� �

�����これも図を描いて考える問題のようである。

　　　　　　　　　　　　　　　　　　　点�3�を動かしてみて、点�4�の存在する範囲が

　　　　　　　　　　　　　　　　　　変わる点�3�の位置を考えたとき、上右図の点� �3 �

　　　　　　　　　　　　　　　　　　の位置である。このときの点� �3 �の座標は�\�座標

　　　　　　　　　　　　　　　　　　が���となるので、その座標は�� 
(� ����� �となる。

　　　　　　　　　　　　　　　　　　そして、����から�D (� �までが最終的な図形に

　　　　　　　　　　　　　　　　　　なる。

　　　　　　　　　　　　　　　　　　　以上からら場合分けを考えると、

　　　　　　　　　　　　　　　　　　　�� 
ⅰ ����D�(� �

　　　　　　　　　　　　　　　　　　　�� 
ⅱ ��(� �D�(� �　の２通りである。



�� 
ⅰ ����D�(� �のとき
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　　図より

　　�I� 
D  ���
�D 
�� ･���D 
�� �

�D �� 
�� �

　　　　　　　　　　�� 
��� D � ･���
�D 
�� ･��

　　�I� 
D  
�D �� �D �D���

� 
ⅱ ��(� �D�(� �のとき

[�

�\

�2 � � �

�

�

�

$

%

3�

D�

3

D��D��

�D �

�D ��
　�I� 
D  �D 
�� ･���

�D 
�� ･���･�����D 
�� ･��

　　　� � �D �D���

　以上から

（答）�
�� �D  (�のとき���������I� 
D ����D � �D D �

�(� �D  (�のとき����I� 
D ��� �D D �
�

�����最小にする�D�の値を求めるために、�I� 
D �の増減表を作ろうと思う。

　�� 
ⅰ ����D�(� �のとき　�I� 
D  
�D �� �D �D���

　　　　　　�I �� 
D  �
�D ��D�� �

�

� ��D
�

�
�
�

�
　頂点��

�

�
��� ��

�

�
�

　　　さらに、�I �� 
�  �����、I �� 
(�  ���(� �� ���(�  (�� �(�� ���

　　　これらより　���D�(� のとき�I �� 
D ���

　　　また�  
�D ( �
OLP I� 
D

�D (�
OLP  � 
����D � �D D � �� (� �

　�� 
ⅱ ��(� �D�(� �のとき　�I� 
D  �
�D �D��

　　　　　　　　　　　　　　�I �� 
D  �D���

　　　これより　�(� �D�(� �のとき　�I �� 
D !��　また�I� 
(�  ��(� �

　　�ⅰ���ⅱ�より�

D � … (� … (�

I �� 
D � �� � �� �

I� 
D � �� (� �

�　

　　この増減表より�D (� �のとき　最小値���(� �をとる。………�答�

それでは第３問を3\WKRQで分析する。どのように分析しようか、といろいろ考えてみた



が、�I� 
D �のグラフを描くことぐらいしか思いつかなかった。軸の設定などの箇所は第１

問と同じなのでここでは省略する。

����������������������WRN\RB��B��B12����������

[� �QS�DUDQJH����QS�VTUW������������

\� �[

���
[

��[��

D[�SORW�[��\��FRORU� ��JUHHQ��

[� �QS�DUDQJH�QS�VTUW�����QS�VTUW������������

\� ��
[

��[��

D[�SORW�[��\��FRORU� ��JUHHQ��

D� �QS�VTUW���

E� ��
D

��D��

D[�SORW�D��E��PDUNHU 
�
�PDUNHUVL]H ���FRORU� ��UHG��

SOW�VKRZ��

����������������������S\WKRQ�SURJUDP���������

［出力］

　第３問の出題の狙いは何なのだろうか。それ程難しくはない。むしろ基本的な問題と思

うが、問題文を的確に理解し、それを数式で表すことができるか、という趣旨なのかもし

れない。取りあえず、これで第３問の解答�解説は終わる。



[�

�\

�2�� �� � �

��

��

�

�

\ �[�

　この問題を見て最初に思ったのは、点�3�と原

点を結んだ直線は�ほぼ���点で交わりそうだ、と

いうことである。しかし、右図の斜線部分の範

囲に点�3�が存在した場合は、原点を通る直線の

交点は原点だけになってしまう。それでは、場

合分けをして証明しようかとも考えたが、結局、

斜線部分の範囲にある点�3�から３点で交わる直

線の存在が全ての範囲に使える、ということで

次の答案になった。

�����

�　点�3� 
D���E ���D���E�は全ての実数�とおく。

点�3�を通り傾き�P�の直線�O�の式は�

\�E P�[ 
�D ��すなわち�O�\ P[�PD�E……①�となる。

命題は、①の直線�O�が曲線�&�\ �[ �[……②�と異なる３点で交わる傾き�P�が�D���E�の値

に関わらず存在することを示せばよい。

すなわち①と②から方程式� �[ �[ P[�PD�E……③�が�D���E�の値に関わらず異なる３

個の実数解を持つ�P�の値が存在することである。

③の方程式をまとめると　� �[ ��P 
�� [�PD�E ��

ここで�I� 
[  
�[ ��P 
�� [�PD�E……④�とおくと、④のグラフが�[�軸と異なる３点で

交わることと③の方程式が異なる３個の実数解を持つことと同値である。

　　I �� 
[  �
�[ ��P 
�� �より④のグラフを少なくとも２つの極値を持たねばならないの

で、�I �� 
[  ��となる２つの異なる実数解が必要である。そのため少なくと�もP!���と



ならねばならなく、その値は�[ �)
�P �

�
�である。

さらに、④は最高次数の係数が正の３次関数なので、極大値�I� ��)
�P �

�
�、極小値�

I� �)
�P �

�
となる。④の３次関数が�[�軸と異なる３点で交わる必要十分条件は�

I� ��)
�P �

�
･I� �)

�P �

�
���となればよい。

※ここで�I� ��)
�P �

�
�や�I� �)

�P �

�
�の計算は� �[ ��P 
�� [�PD�E�を

　�� �[ ��P 
�� �で割って、その余りの�[�に��)
�P �

�
�などを代入する。

�
�[ ��P 
�� [�PD ��E 	��

�[ ��P �
��  
�

�
[��

�[ ��P �
�� �
�

� �P 
�� [�PD�E

これより

�I� ��)
�P �

�
･I� �)

�P �

�
 �

� 
�PD E ��
�

� �
�P �

�
�

�　　　　　　　　　　　　　　 �
�

��
�P ��

�D ��
�

�
�P ��

�

� ���DE P� �E �
�

��
�

これは�P�の３次関数であり、�D���E�の値に関わらず�、この関数の値が負になる�P�は必ず

存在する。

　以上より　点�3�を通る直線で傾き�P�を　�P!���　かつ

　�
�

��
�P ��

�D ��
�

�
�P ��

�

� ���DE P� �E �
�

��
���となる�P�の値すなわち�を十分大

きな値�P�をとした直線�　O�\ P[�PD�Eは�必ず存在し、この直線は曲線�&�と異なる

３点で交わる。W

�����この問題は答えはすぐに分かるが、それを証明するのは大変だな、と思う。つまり、

原点に関して対称な３次関数なので、直線と囲まれる２つの部分の面積が等しくなるのは、

原点を通る直線でしかありえないだろう、ということである。だが、これを証明しないで

答えだけで、果たして点数はくれるのだろうか。私が採点者なら満点は当然やらないが、

ある程度の点数は与えるが、果たしてこの大学の教授はどうなんだろうか。一応、ここで

は証明をしよう。直線との交点の�[�座標を�小さい順にD、�E�、�F�とおいて、面積が等し

くなるので、�' D

E

 � 
曲線ー直線 G[ ' E

F

� 
�直線 曲線 G[�とするのが分かりやすいが、原点に

関して対称な関数なので�' D

F

� 
�曲線 直線 G[ ��でも同じ意味になる。このどちらかを解

くとE ��になることを示す。計算は、後半の方が積分が１回で済むので楽そうである。



�

　直線�\ P[�Q��……①�　曲線�&�\ 
�[ �[……②�が異なる３点で交わるとし、その

交点の�[�座標を�D、�E�、�F����D�E 
�F �とおく。

さらに、曲線と直線が囲まれた部分をそれぞれ� �6 �、 �6 �とおく。

[�

�\

�2�� �

��

�

�6 �
�6 �

�6  �6 �なので� �6 � �6  ��すなわち�' D

F

� 
�② ① G[ ��

ここで�②�① ��の解が�D、�E�、�F�なので

②�① �[ 
�D �[ 
�E �[ 
�F とおける。�

これより�' D

F

� 
�[ D � 
�[ E � 
�[ F G[ ��となる。

左辺 ' D

F

� ��[� 
�[ D � 
�[ F E� 
�[ D � 
�[ F G[�

�������� �' D

F

� ��� 
��[ D[ � 
�[ F E� 
�[ D � 
�[ F G[�

�������� �
D

F

� �� ��
�
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�

�
D �[ � 
�[ F �' D

F

� ��
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�[
�

�
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�F �
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�D[ �
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�
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������� 
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�
�D �D 
�F ��

�
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�F ��
�

�
�DF ��

�

��
�D ��
�

�
�D �

�

�
E �

� 
�F D �

������� �
�

�� �
�D 
� �F �

�

�
DF�

�D 
� �F �
�

�
E �

� 
�F D �

������� ��
�D 
� �F �

�
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�

��
�F ��
�

�
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�

�
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�F D � � �
� 
�D F �

�

�� �
�D 
� �F �

�

�
E�D �
�F �

��　�� � �
� 
�D F �

�

��
D�

�

��
F ��
�

�
E  

�

��
�

� 
�D F �D�F 
��E �

�左辺 �より�D
F�なので�D�F �E……③�
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�2�� �� � �
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\ �[�

さらに、�D、�E�、�F�は方程式� �[ ��P 
�� [�Q ��の解なので、

解と係数の関係より�D�E�F �……④�

③、④より�E ��となり、このことから、

面積が等しくなる直線は必ず原点を通る。

すなわち�Q ��となる。

次に�、\ P[�と�\ �[ �[�が異なる３点で交わ

る必要十分条件は�����よりP!���のときである。

よって、直線�\ P[�で曲線'と異なる３つの

交点の存在範囲が求める領域となり、右図の

斜線部分が求める領域である。

ただし、�境界線上の点で、原点以外はすべて

　　　　�含まれない。

以上が����の解答である。



　次に3\WKRQを使って解析してみようと思ったが、この条件を満たす領域を図示するプ

ログラムはかなり面倒であり、作れるかどうかも分からない。たとえ出来たとしても結果

は同じになるので面白さに欠けるだろう。そこで、ここでは3\WKRQのライブラリで数式

処理ができる6\P3\を使って積分してみようと思う。コンピュータでの処理と言えば、

数値処理だけだと勘違いしていた私にとって、数式のまま処理できる6\P3\は衝撃のラ

イブラリである。手計算では面倒だった�' D

F

� 
�[ D � 
�[ E � 
�[ F G[�の積分をしてみよう。

�������������������������WRN\RB��B�����������

LPSRUW�V\PS\�DV�V\P

LPSRUW�QXPS\�DV�QXP

IURP�,3\WKRQ�GLVSOD\�LPSRUW�GLVSOD\

V\P�LQLWBSULQWLQJ��

D�E�F�[� �V\P�V\PEROV��D�E�F�[��

II� ��[�D�
�[�E�
�[�F�

I�� �V\P�LQWHJUDWH�II��[�D�F��

GLVSOD\��積分した結果をそのまま出力?Q��I��

GLVSOD\��積分した結果を展開して出力?Q��V\P�H[SDQG�I���

GLVSOD\��積分した結果を因数分解して出力?Q��V\P�IDFWRU�I���

������������������������S\WKRQ�SURJUDP�������

積分した結果をそのまま出力

��D

������D

�
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F������D
E
F

����F

������F
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積分した結果を展開して出力

�D

�������D

�
E�����D

�
F�����D

�
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F�����D
E
F

������D
F

������

E
F

������F

����

積分した結果を因数分解して出力

��D���F�

�
�D����
E���F����

［出力］

　出力結果は$QDFRQGDにある-XS\WHU�1RWHを使ったら、もっと綺麗に出力される。プ

ログラムも�-XS\WHU�1RWH用にGLVSOD\��コマンドを使用して作成している。しかし、96&

���9LVXDO�6WXGLR�&RGH���というソフトウェア開発ツールを使っている場合は、出力は上記

のようになる。プログラムに慣れている人にとっては見慣れた表現であるが、それでも一

見して分かる式ではない。そこで、-XS\WHU�1RWHで出力した結果をスクリーンショット

で次に示す。



　私は最後の結果を見て驚いた。�まず' D

F

� 
�[ D � 
�[ E � 
�[ F G[�を計算しようとしたとき、

全て展開して、その後積分をして、上端、下端を代入し、それをまとめ上げる、というプ

ロセスもあるな、と考えた。が、計算がかなり面倒な気がした。それならば、部分積分法

と公式�' D

E

� 
�[ D � 
�[ E G[ �
�

�
�

� 
�E D �を組み合わせた方法の方が簡単だろう、という

ことで先に述べたような解答をした。しかし、3\WKRQでの出力結果から予想すると、3\

WKRQ�（6\P3\）は単純に展開して積分しているようである。そして、その式を因数分

解した形にまとめることもできている。さらに、その結果は手計算でした形と全く同じで

あった。驚きである。このプログラムにに費やした時間は、考えながらコンピュータに打

ち込んで、実行して表示するまで、約５分ぐらいしか掛からなかった。要するに複雑なア

ルゴリズムを一切考える必要がなく、単に6\P3\�というライブラリに積分したい式を渡

すだけのプログラムで積分から因数分解までをしてしまう。手計算で積分するのとコンピ

ュータを使って積分するのを、「用意、ドン」で競争した場合、圧倒的にコンピュータを

使ってした方が勝ちであろう。

　将来、数学の入試は、紙と鉛筆とパソコンとなるかもしれない。大学側または会社側と

して、優秀な人材を確保したいならば、自由にパソコンを使いこなせる人の方が研究や仕

事への能力が高いのではなかろうか。もしそうなった場合、パソコンは備え付けのもので、

0DFか:LQGRZVか/LQX[かを選べるようにして、ネットには繋げず、中に入っているア

プリケーションは2IILFHと3\WKRQ（$QDFRQGD）だけでどうだろうか。
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　まず空間図形の問題は、問題文を読んで図のイメージがつか

めるかどうかが、解けるかどうかの分かれ目であろう。左図は、

�[]�平面での断面図である。問題文を読みながら大多数の受験生

はまずこの図を描いて、どのように解くかを考えたであろう。

私もそうである。

　この図から、まず�[]�平面だけで考えるとどうなるか試してみ

ようとした。つまり、点�3�W���W 
�� �、点�4� 
�V����� �とおくとどうなるだろうか、と考えた。

34 ��より�( ��� 
�W V �
� 
�W �  ��、点�0� 
�[���]� �とおくと、�

 [
�W V

�
……①

 ]
�W �

�
……②

�

これらから、�[�と]�の関係式を求めると� �
� 
���] [ � � �]  ��という２次曲線になってし

まい、途方に暮れてしまった。

それじゃ、縦に切って駄目なら横に切ろうということで、�[\�平面に平行で点�0�を通る

平面で切ろうと考えた。さっきとは逆にして点�0� 
�[���\���N� �、点�3� 
�S���T����N �とおく。

すると点�4���[�S����\ 
�T����� ��となる。ここで、34 ��なので　�

( ���� 
���[ S S �
� 
���\ T T �

� 
�N  ��すなわち� �
� 
�[ S � �

� 
�\ T  �� �N �となる。

点�0�の存在範囲から�
�

�
�N���となり、この式�[\�平面においては中心�� 
�S����T� �、半径�

( �� �N �の円となる。これで解けそうだな、と確信した。しかし、果たしてどのような

[�

�\

�2�� �� �

��

�

図形になるのだろうか。上から見た図を予想してみたのが次の図である。

　　　　　　　　　　　　　　　　ドーナッツの形状になるだろうと予想する。何故なら

　　　　　　　　　　　　　　　中心�� 
�S���T����� �は点�3�の座標であり、点�3�を固定して

　　　　　　　　　　　　　　　長さ���がである線分�34�の点�4�の軌跡は図から考えて

　　　　　　　　　　　　　　　も円になるのは明らかであるが、これを式で表して証明

　　　　　　　　　　　　　　　するのは難しそうであるが、何とかしてドーナッツの形

　　　　　　　　　　　　　　　状になるのをここでは示してみる。でも、本番のときは

　　　　　　　　　　　　　　　私ならば、このような証明は抜きにして、図でも描いて

　　　　　　　　　　　　　　　ごまかすだろう。満点は貰えないかもしれないが、ある



程度の点数はゲットできるのでは、と期待しながら答案を書くと思う。　　　　　　　　

下図は、�[\�平面に垂直で�]�軸を含む平面で切った断面図である。
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断面図１

　先に述べたように、点�0� 
�[���\���N� �、点�3� 
�S���T����N �とおくと点�4���[�S����\ 
�T����� ��

となり、�34 ��から�、 �
� 
�[ S � �

� 
�\ T  �� �N ……①となる。�

でも、これだけだと、点�3�は何処にあってもよく、単に線分�34�の長さ２という条件を

満たすだけである。つまり①だけの式だとドーナッツの形になる、ということを示すこと

はできない。果たして、点�3�が曲面�6�上にある、という条件をどうするか、ここでしば

し考えた。点�3�が上図の線分上にある条件、それは、図の△$3&�が二等辺三角形である、

ということである。つまり、�線分3& 線分$&となればよい。

すると上図から、�24 ( �� � �N �3& �( �� �N ����N�であり、さらに、

24 ( ��� 
��[ S �
� 
��\ T なので、

�
� 
��[ S � �

� 
��\ T  
�

� 
���( �� �N � �N �

�

� ��[
S

�
�

�

� ��\
T

�
 

�
� 
��( �� �N � N ……②�となる。

①を展開すると� �[ � �\ ���S[ 
�T\ � �S � �T  �� �N �

②を展開すると� �[ � �\ ��S[ 
�T\ �
�S

�
�

�T

�
 �� �N ���� 
�N ( �� �N � �

� 
�� N …②��

この上下を引いてまとめると

�� 
�S[ T\ �
�

�
�S �
�

�
�T  ��� 
�� N ( �� �N � �

� 
�� N �



S[�T\ 
�

�
�S �
�

�
�T ���� 
�N ( �� �N � �

� 
�� N �

この式を再度②�に代入してまとめると

�[ � �\  
�

� �
�S 
� �T ��� �N ���� 
�N ( �� �N �� �

� 
�� N �

ここで、3& ( ��S �T �、�$& ���N�なので、� �S � �T  �
� 
�� �N となる。

これを代入すると

�[ � �\  �� �N ���� 
�N ( �� �N �� �
� 
�� N

� �[ � �\  
�

� 
�( �� �N �� �N

これは中心が原点、半径�( �� �N ����N�の円となる。

これと断面図１から、点�3�を固定し点�4�を動かしたとき、点�0の軌跡は、中心�� 
�S���T� �、

半径�( �� �N �の円となり、点�3�の�]�座標だけを固定し�平面�6上を動かしたとき、�点�0

の軌跡は、中心�が原点、半径�( �� �N ����N�の円となる。以上から、平面�] N�にお

ける点�0�が通る図形はドーナッツの形となる。

これらから、このドーナッツ形の面積を�N�で表し、これが平面�] N�で切ったときの断面

積になるので、この面積を��N�
�

�
��で定積分をすれば�.�の体積が求まる。

断面図１から、ドーナッツの内側の円の半径は�　���N�( �� �N �

　　　　　　　ドーナッツの外側の円の半径は�　���N�( �� �N �となる。

しかし、このとき内側の円の半径が負になってはいけない。����N���より�
�

�
�N��で

ある。�����N�( �� �N ����を解くと�N�
�

�
�となり、ドーナッツの形状になるのは�

�

�
�N�

�

�
�のときだけである。それでは、ここで�

�

�
�N���のときを考える。
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断面図２



　断面図２から、外側の円の半径は����N�( �� �N �であるが、中点�0�が通過する範囲

は外側の円より小さい。つまり、はみ出した部分の面積を引かなければならない。はみ出

した部分の面積の半径は�( �� �N ��� 
��N �となり、結局、ドーナッツの内側の円の面積

と同じになる。

このことから、�
�

�
�N���における平面�] N�で切ったときの断面積は

�6� 
N  
�

� 
��� �N ( �� �N S�
�

� 
��� �N ( �� �N S �S�� 
�N ( �� �N �となる。�

さらに、���N���より�
�

�
�N���なので、求める体積は�9 ' �

�

�

6� 
N GN�である。

　9 �S' �
�

�

� 
�� N ( �� �N GN �S� �' �
�

�

�( �� �N GN ' �
�

�

N( �� �N GN �

ここで�' �
�

�

( �� �N GN�の積分を復習しよう。これは基本問題であり、半径１の円を利用し

ても求められるが、ここでは�VLQK �を使って積分をする。

N VLQK �とおくと�　GN FRVKGK�　�
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　次に�' �
�

�

N( �� �N GN�の積分をしよう。

�� �N  X�とおくと�　��NGN GX�　�

N
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K
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よって、求める体積�9 �S' �
�

�
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�� N ( �� �N GN� �S�
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�
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�　　　　　　　　　��� �S�
S

�
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� �� (�

�
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�

�
�S ��(� S�……（答）

　それでは第５問を3\WKRQを使って分析しよう。やはり、最初は上の定積分の答えがあ

っているか、と言うよりも、3\WKRQでの結果と同じになるかどうか、調べてみる。

　驚くことに、3\WKRQでの出力結果と手計算でのそれとでは、形がまるっきり違う。�

�������S�� �S �と���(� S�
� �S

�
��������S�

�

�
�S �である。明らかに違う。しかし、

両者の近似値としての計算結果は同じである。それは何故なのか。それを考えた。まず�

　�S' � 
�� [ ( �� �[ G[��の不定積分を3\WKRQで求めた。�



　次に、手計算での不定積分を求めてみた。途中は定積分のときと同じなので省略するが、

その結果は以下である。

　　9� 
[  �S�
�

�
K�
�

�
VLQ�K�

�

� �･
�

�

�
�X � �S�

�

�
K�
�

�
VLQKFRVK ��

�

�
X(X �

　　ここで�VLQK [�、�FRVK ( �� �[ �、X �� �[ 、さらに�K DUFVLQ[ �（これは高

校では習わないが単に�VLQK [�の逆関数で、�K ��VLQ [ �と書く場合もある）となる。

これらを代入すると

　　�9� 
[  �S�
�

�
DUFVLQ[�

�

�
[( �� �[ �

�

� �� �
� �[ ( �� �[
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�[ ( �� �[ �
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�
[( �� �[ �
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�
( �� �[ ��

�

�
DUFVLQ[ �

まさに、3\WKRQでの答えと同じになった。

これを使って�[�
�

�
��の定積分を計算した場合、�DUFVLQ  

�

�

S

�
�と�DUFVLQ� 

S

�
�なの

で、� �S �の係数は�
�

�
�にしかならないと思うが、3\WKRQでの計算では���になっている。そ

れでも両者の近似値は同じである。これは3\WKRQ（6\P3\）がどのような手順で定積

分を計算しているかを調べないと分からないので、考察はここでやめることにした。

　それでは次に� �[ � �\  
�

� 
�( �� �N �� �N �のグラフを3\WKRQで描いてみよう。

　プログラムで関数を描く基本として、�\ I� 
[ �の形ならば、�[�に適当な値を代入して�\

�を求め、その点�� 
�[���\� �を座標平面上にプロットすれば図が描ける。簡単である。しかし、

�
�[

�
�

�\

�
 ��等のような関数は、�\ I� 
[ �の形にして描くのは非常に面倒である。

　そこで、これらの形を媒介変数表示（極形式）で表すのがプログラムの基本である。�

�[

�
�

�\

�
 ��は楕円の方程式（陰関数）であるが、これは��

 [ �FRVK

 \ �VLQK
�として表され、K

に適当な値を代入して点�� 
�[���\� �の値を求めて図に描けばよい。

つまり、�[\�平面においては��
 [ UFRVK

 \ UVLQK
�、空間においては�"

 [ UFRVDFRVE

 \ UFRVDVLQE

 ] UFRVD

�が媒介変数

表示の基本の形である。

　それでは、この問題を3\WKRQで描いてみよう。かなり大変な作業である。

まず、�ドーナッツの外側の円� �[ � �\  
�

� 
�( �� �N �� �N �を描いてみようと思うが、こ

こで�] N�である。空間図形である。先に述べた媒介変数の基本として�[�\�]�を２つの角

度�Dと�E�を使って表してみる。まず�[\�平面に投影した直線と原点とのなす角を�D�とおく。

次に直線と�]�軸とのなす角を�E�と置くのが基本であるが、ここでは、直線�34�と�[\�平面

とのなす角を�E�とおく（断面図３参照）。
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ここで�] VLQE �となり、外側の円の半径����]�( �� �]  ���VLQE�FRVE �

これから、��
 [ � 
��� �VLQE FRVE FRVD

 \ � 
��� �VLQE FRVE VLQD
�となる。これを使ってドーナッツの外側の円を

表示するプログラムを作成した。

���������������������WRN\RB��B��B12�����������

IURP�PSOBWRRONLWV�PSORW�G�LPSRUW�$[HV�'

LPSRUW�PDWSORWOLE�S\SORW�DV�SOW

LPSRUW�QXPS\�DV�QS

IURP�PSOBWRRONLWV�PSORW�G�LPSRUW�$[HV�'

ILJ� �SOW�ILJXUH��

D[� �ILJ�DGGBVXESORW������SURMHFWLRQ 
�G
�

D[�VHWBWLWOH��7RN\R�8QLYHUVLW\������0DWK�TX���12����IRQWVL]H� ����

D� �QS�OLQVSDFH������
�QS�SL������

E� �QS�OLQVSDFH�QS�SL����QS�SL��������

[� �QS�RXWHU����
QS�VLQ�E��QS�FRV�E���QS�FRV�D��

\� �QS�RXWHU����
QS�VLQ�E��QS�FRV�E���QS�VLQ�D��

]� �QS�RXWHU�QS�VLQ�E��QS�RQHV�QS�VL]H�D���

D[�SORWBVXUIDFH�[��\��]�FPDS �MHW��FRORU �UHG��UFRXQW �����FFRXQW �����DQWLDO

LDVHG )DOVH�

SOW�VKRZ��

���������������������S\WKRQ�SURJUDP����������



［出力］

　次にドーナッツの内側の円がどうなるのか、上のプログラムを変更して実行した。

変更箇所　��行目　[� �QS�RXWHU�����
QS�VLQ�E��QS�FRV�E���QS�FRV�D��

　　　　　��行目　\� �QS�RXWHU�����
QS�VLQ�E��QS�FRV�E���QS�VLQ�D��

［出力］

　なかなか面白い結果である。確かに�計算通り����のところで０になっている。この図を

見ると内側の円の方が大きそうに見えるが�、�[�軸�\�軸の目盛りが異なるだけで、上の図

の中にすっぽりと下の図が収まるはずである。でも、気になるので、次のプログラムを作



成して，確認した。

���������������������WRN\RB��B��B12�����������

LPSRUW�QXPS\�DV�QS

LPSRUW�V\PS\�DV�V\P

LPSRUW�PDWSORWOLE�S\SORW�DV�SOW

ILJ� �SOW�ILJXUH��

D[� �ILJ�DGGBVXESORW�����

D[�VHWBWLWOH��7RN\R�8QLYHUVLW\������0DWK�TX���12����IRQWVL]H� ����

��ここにあった座標平面の設定は省略します

[� �QS�OLQVSDFH������������

]�� ����
[�QS�VTUW���[

���

]�� ����
[�QS�VTUW���[

���

]�� ��]�

]�� ��]�

D[�SORW�]���[���FRORU� ��JUHHQ��

D[�SORW�]���[���FRORU� ��UHG��

D[�SORW�]���[���FRORU� ��JUHHQ��

D[�SORW�]���[���FRORU� ��UHG��

SOW�VKRZ��

���������������������S\WKRQ�SURJUDP����������

［出力］

　緑がドーナッツの外側で赤が内側である。以上で第５問の解説は終わる。



　数学の大学入試問題は、短いほど難解で、長ったらしい文章は理解してしまえば簡単で

ある、というのが定説である。この問題は、６問の中で一番文章が長く、ベクトルの問題

かと思って読み進めると、最終的には確率の分野の問題であるのが分かった。果たして何

を言っているのだろうか。まず、� NY  � �FRV
�NS

�
���VLQ

�NS

�
�は何か、を考える。このベ

クトルは、始点が原点にあり、半径１の円周上にその終点があり、さらにその終点は�円

を
�

�
S�すなわち������に３分割する。そのベクトルを足して、最終的に終点の座標が原点

になるパターンを考えさせているようである。それも、コインが裏のときには点は移動さ

せず、表が出たときに、それまで出てきた裏の回数によって点が移動する、ということで

ある。要するに、ベクトルと確率の融合問題である。

　それでは、ここでベクトルの基本事項を復習しよう。



���������������������数学Ｂ（数研出版）��������

１　平面上のベクトル

○　有向線分とベクトル

　長さや質量のような量は，それぞれ量の単位を定めておくと，その単位で測った数値だ

けで表される。これに対して，例えば，風の吹き方は，北東の風秒速����P�というように，

向きと大きさで表される。向きと大きさで表される量には，速度のほかに，力や加速度な

)

) �

$

% &

$ �

% � &�

$

%

�始点�

�終点�

どがある。

　また，平面上の平行移動によって，図形�)�が

図形�) ��に移されるとき，この平行移動も，移動

の向きと距離によって定まる。右の図の場合，

平行移動は，矢印のついた線分�$$ �，%% ��など

で表される。

　図のように，向きを指定した線分を��有向線分��

という。有向線分�$%�において，$�をその��始�点，

%�をその��終�点��という。また，線分�$%�の長さ

を，有向線分�$%�の大きさ，または長さという。

　有向線分は位置と，向きおよび大きさで定まる。その位置を問題にしないで，向きと大

きさだけで定まる量を��ベクトル��という。

$

%

&

'

　したがって，右の図のように，位置は違うが，

向きが同じで大きさが等しい有向線分�$%�と

有向線分�&'�は，ベクトルとしては，同じもの

を表す。

○　ベクトルの加法

F D�E

2

&

$

D

D

E
E

　��つのベクトル�D，E�があるとき，��点�2�を

任意に定めて

　　　　　D 2$，　E $&

となる点�$，&�をとり，ベクトル�F 2&�を

考える。この�F�を�D�と�E�の��和��といい，

F D�E�で表す。

　すなわち

　　　　　　2$�$& 2&

　上の定義は，点�2�のとり方に無関係である。

�����������������ここまで「数学Ｂ（数研出版）」からの引用���



　この教科書のベクトルの導入の文章は簡潔で、読んでいて気持ちがいい。しかし、初め

てベクトルを習う高校生にとっては、この文章では納得しないのではないだろうか。小学

校から中学校に上がって、算数から数学になったときの最初の戸惑いは、未知数�[�なの

かな、と思うことがある。慣れてしまった人にとっては、�[�と置いて方程式を作ってそ

れを解く、というのが当たり前のように思えるが、その境地に達するのに、最初は変に考

え過ぎず、言われるがままに問題を解いていくだけであっただろう。そしてしばらくした

ら、こっちの方が簡単に解けるんだ、と納得し、文字�[�に親しみが沸いてくるのではな

いか、と思う。私は、長年、様々な高校生を教えてきて、この壁を乗り越えられずに数学

嫌いになった人たちを数多く見てきた。が、むしろ、�[�って何？、と最初に考え過ぎて

壁を作った人の方が、数学的素養が十分に備わっているような気がする。でも、その壁を

乗り越えるかどうかは、最終的には本人の問題なのだろう。乗り越えた後の展望には広大

な平原が横たわっていて、([FHOOHQWな人に変貌するのは、乗り越えた人の戯言なのかも

しれない。このベクトルも、未知数�[�のときと同じように、最初に壁を作らせず、様々

な問題を解かせて、こんなもんか、と思わせるのが、ベストとは言わないがベターな勉強

法であろう。つまり、最初の授業でベクトルを教える、または学ぶときの合い言葉は、

「まず解いてみよう」、そして、「なんだ、こんなもんか」である。

それでは、第６問の解説に話しを戻そう。

N�はコイン投げで裏になった回数である。ここで�O ������…�とする。

[�

�\

�2�� �

��

�

N ������������…�

N �����������…�

N �������������…�

N �O�　　のときはベクトル　　　　　

�N �O���のときはベクトル　　　　　

N �O���のときはベクトル　　　　　

ベクトルの和は、始点と終点を合わせな

がら平行移動させ、最初の始点と最後の

終点を結んだものになる。

この問題は、原点から始まって原点に終わらせるので　　　　　　のような形になるとい

うことである。それでは、コイン投げの裏表で�����の８回投げて原点に終点がある場合を

考えてみよう。

まず、�
� � � � � � � �

裏 裏 裏 裏 裏 裏 裏 裏
�は原点から動かないのでＯＫである。

これが最初に気付いたパターンである。次に、表が３回出るパターンを考えた。



　
� � � � � � � �

表 裏 表 裏 表 裏 裏 裏
�をまず最初に考えた。これから全てのパターンを

洗い出してみようかな、と思ったが、意外と大変であることが分かった。適当に当てはめ

ても原点に戻るパターンにはならない。いろいろ試行錯誤した結果、ようやく解く方法を

見つけた。

要するに　　　　　のパターンになるには、次の表１の○の中から表になる３つを選ぶ。

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 ○ 裏 ○ 裏 ○ 裏 ○ 裏 ○ 裏 ○
�

�　　　　　　　　　　　　　　　　　表１

さらに、単に選ぶのではなく、��N｜N � ������ �、��N｜N � ������ �、��N｜N � ������� �から１つ

ずつ選ばなければ原点に戻るパターンにならない。。

すなわち

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 表 裏 表 裏 表 裏 � 裏 � 裏 �
�

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 表 裏 表 裏 � 裏 � 裏 � 裏 表
�

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 表 裏 � 裏 表 裏 � 裏 表 裏 �
�

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 表� 裏 � 裏 � 裏 � 裏 表 裏 表
�

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 � 裏 表 裏 表 裏 表 裏 � 裏 �
�

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 � 裏 表 裏 � 裏 表 裏 � 裏 表
�

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 � 裏 � 裏 表 裏 表 裏 表 裏 �
�

　　　　　　
Nの値 � � � � �� � � � �� � ��

表裏 � 裏 � 裏 � 裏 表 裏 表 裏 表
�

以上の８通りとなり、計算式は� ��  ��である。これで終わりかな、と思ったが見直した。

　　　　　　　　　　　２回連続になっても最終の終点は原点になるが、その為には表が

　　　　　　　　　　　６回、裏が少なくとも５回必要であり、コイン投げ８回には収ま

　　　　　　　　　　　らない。でも、何故か不安がよぎる。この大学がこのままで終わ



るわけがない、という今までの経験からくる不安である。じっくり検証してみる。そこで

気付く。表表連続したパターンを検証していなかった。最初はチラッと考えたのだが、８

回を超えてしまうよな、と思い込んでしまった。実際の試験のとき、これで終わって、９

通りとして、答えを�
�
��
 
�

���
�と書いてしまっていたら、翌日の自己採点で涙を流して

いただろう。要するに、次の一回り大きな三角形になる場合で８回で終わるのがあった。

　　　　　　　　　　　　このパターンになるのが次の１通りである。

　　　　　　　　　　　　
Nの値 � � � �� � � � �

表裏 表� 表 裏 表 表 裏 表 表
�

よって、求める確率は　�
��
��
 
�

���
�　……（答）

次に�����の解法を考える。

����回のコイン投げをいきなり考えるより、まず����回でイメージをつかんでみようとし

た。さらに表が出る回数を���回とすると裏が出る回数は����回である。この裏の回数を���

と同じように考え、裏が出る回数によって

�　　　　　　 �.  � �N  N �������������������

�　　　　　　 �.  � �N  N ���������������������� �

�　　　　　　 �.  � �N  N ���������������������� �

�の３つの集合を考える。

まず最初は、三角形が２つになる選び方である。これは

集合� �. �、� �. �、� �. �からそれぞれ２つずつ選び、それら

の積が�右図になるパターンである。すなわち、� ��& ･ ��& ･ ��&  
�

� 
��& �である。

次に、連続して表が出た場合の三角形を考える。そのとき、単に大きな三角形だけではな

く、以下に示す７種類の三角形があると気付いた。

（ア）　　　　　　　　（イ）　　　　　　　（ウ）　　　　　　　（エ）

　　　　　　　　　　　（オ）　　　　　　　（カ）　　　　　　　（キ）



それぞれの場合の数は、

（ア）� ��& ･ ��& ･ ��&  
�

� 
��& �　（イ）～（エ）� ��& ･ ��& ･ ��&  
�

� 
��& ･ ��& �

　　　　　　　　　　　　　���（オ）～（キ）� ��& ･ ��& ･ ��&  ��& ･
�

� 
��& �

以上から、����回のコイン投げで�、表が���回で最終的に終点が原点に戻る場合の数は、

�
� 
��& �� �

� 
��& ･ ��& �� ��& ･
�

� 
��& � �
� 
��& �となる�。この形を見ると因数分解をしたくなる

のは私だけじゃないだろう。� �
� 
��& �� �

� 
��& ･ ��& �� ��& ･
�

� 
��& � �
� 
��&  �

� 
���& ��& �

この形で、２００回のコイン投げで、表が�ちょうどU�回出て、最終的に原点の戻る場合の

数に拡張できるだろうか。� ��& � ��& �、これを拡張すると、

� P��� P& � �P ���� P& � �P ���� P& �…� ���� P& � ���� P& ��となりそうであるが、この後どう

するのか、皆目見当も付かない。う～ん、と唸りながら悩む。まさに土砂降りの雨の中を

歩いているような気がしてくる。が、雨雲がパッと晴れて光が差し込むように、ふっと次

の公式を思い出した。　　 UQ&  �U ��Q �& � U�Q �& 　　ただし　��U�Q������Q���

　これはある特定の１個を含む場合（� �U ��Q �& ）と含まない場合（� U�Q �& ）は互いに排反

なので、それを単純に足した数はもとの組み合わせの数に等しい、というものである。

これを使えば� �
� 
��& �� �

� 
��& ･ ��& �� ��& ･
�

� 
��& � �
� 
��&  �

� 
���& ��&  �
� 
��& となる。

����回のコイン投げで�、表が���回のときは� �
� 
��& となる理由を考えなければ、これを�����

回のコイン投げで、表が�ちょうど�U�回出る場合まで拡張できない。

　 U�& �の�基本的な考えは、� �������������������と�� ���������������������� �と�� ���������������������� �から�U�

回選ぶということである。それを���回にして、それぞれから�単に��つ選ぶだけで、先に示

した８つのパターンができる、ということである。ここで悩みに悩んだ末、ある考えが閃

いた。各集合の中に表表と連続させる要素①を加えたらどうだろうか。つまり、

　� �����������������������①� 、�� ��������������������������①� �、�� ��������������������������①� �を考える。

�

�

�

�

��

��
例えば、①以外を選んだ場合����　

①

�

�

�

�

��

�　�

①

�

�

�

��

��

�　�

①

�

�

�

��

��

��のときは、　　　　　　　　　　

�

�

���

��

①
�　集合� �5 �で①を選んだ場合　　

①

�

�

�

�

��

�　�

①

�

�

�

��

��

�　�

①

�

�

�

��

��

��のときは、　　　　　　　　　　



�

①

①
��

�

�
　 �5 と� �5 �で①を選んだ場合　　

①

�

�

�

�

��

�　�

①

�

�

�

��

��

�　�

①

�

�

�

��

��

��のときは、　　　　　　　　　　

①

①①

�

���
���� �5 � �5 �5 �で①を選んだ場合　　

①

�

�

�

�

��

�　�

①

�

�

�

��

��

�　�

①

�

�

�

��

��

��のときは、　　　　　　　　　　

　要するに� �
� 
��& �が����回のコイン投げで�、ちょうど表が���回で最終的に原点に戻る場合

の数になる。しかし、これを�����回まで拡張するにはまだまだ不十分であろう。それでは、

�次に���回のコイン投げで�、ちょうど表が����回で最終的に原点に戻る場合を考えてみる。

　これも、上と同じように考えて、裏の出現回数の各要素に①と②と③を加えた集合を考

える。つまり、� ���������������①���②���③� 、�� ����������������①���②���③� �、�� ����������������①���②���③� �

とする。ここでは、この中の集合� �5  � ���������������①���②���③� �だけを取り出して、①～③

の役割を明確にする。表����回なので、� �5 �からは�
��

�
 ��回を選択することになるので、

①

� � �

� � �

②

� � �

③

　　　　例えば、� � � � ① ② ③ �のときは、

　　　　　　　　� � � � ① ② ③ �のときは、

　　　　　　　　� � � � ① ② ③ �のときは、

�

②①

�

�

③①

�

�

③②

�

　　　　　　　　� � � � ① ② ③ �のときは、

　　　　　　　　� � � � ① ② ③ �のときは、

　　　　　　　　� � � � ① ② ③ �のときは、

　このパターンは� � � � �、� � � � �、� � � � ��の場合の３通りある。



③②

�

①
　　　　　　　　� � � � ① ② ③ �のときは、

　このパターンも� � � � �、� � � � �、� � � � ��の場合の３通りある。

以上より、集合� �5 �の選び方は、���������� ���となり、これは� ��&  ���の値と同

じになる。�すなわち、①～③を上記のような結合子と考えると全てのパターンが網羅さ

れる。

　このような考え方で、�����回のコイン投げで、表がちょうど�U�回出る場合の数を求めて、

����の解法をしてみる。

ようやく�����の解法が、ここから始まる。

U�回で� ���; �が�2�にあるので、�U�は���の倍数でなければならない。

なぜならば、� NY  � �FRV
�NS

�
���VLQ

�NS

�
�は３種類のベクトル������が表現され、それ

の個数（表の数）が同数にならなければ� ���; �は�2�にはならない。

また、�� �
���

�
 ���なので、�U �P �（�P ������������…������）とおく。

P���のとき

　 �.  ����������������…������� ���P��� �D ��� �D ��� �D ���…���� �P �D �

　 �.  ����������������…������ ���P��� �D ��� �D ��� �D ���…���� �P �D �

　 �.  ����������������…������� ���P���� �D ��� �D ��� �D ���…���� �P �D を考える。�

この集合の要素が�整数は、� NY  � �FRV
�NS

�
���VLQ

�NS

�
の�N�の値に対応し、要素が QD の�Q�

の意味は、連なった�U�個のベクトルの連結する場所を示す（下図参照）。

……
� � � �����P

�D � �D � �D � �P �D �

……
� � � �����P

�D � �D � �D � �P �D �

……
� � � �����P

�D � �D � �D � �P �D �

ここで、連結した場所が選ばれた場合は、表が連続して出たということであり、裏の回数

はその分減少し、さらに�N�の値の列は、右にずれる。

また、�Q� 
�.  Q� 
�.  Q� 
�.  P �なので、�ベクトル��になる場合の数は� P��& �、その各々

について、ベクトル��になる場合の数は� P��& �、その各々について、ベクトル��になる場



合の数は� P��& �となる。

これより、P���のとき、� ���; �が�2�にあり、かつ、合計�����回のコイン投げで表がちょ

うど�U �P �回出る確率は� U3  
�

� 
P��&
����
………①�となる。

P ��のとき

　 �.  � ����������������…�������� �　 �.  � ����������������…�������� �　 �.  � ����������������…�������� �

　となり、表がちょうど�U ��回出る確率は� U3  
�

� 
���&
����
となって、①に含まれる。�

P ��のとき

　表が���回も出ない、すなわち全て裏のときも� ���; �が�2�にあるので成り立つ。

　その確率は� U3  
�
����
 

�
� 
���&
����
となって、これも①に含まれる。

以上より、���U������さらに�U �P �（�P ������������…������）�のとき

求める確率は� U3  
�

� 
P��&
����
�となる。�……（答）

次に� U3 �の最大値を求める。ここで� P$  P��& とおく。

�P �$

P$
 

�P ���&

P��&
 

���

･� 
�P � � � 
��� P �
･

･P � � 
��� P �

���
 

��� P

�P �

� P$ � �P �$ �のとき　�

　
��� P

�P �
���、さらに�P��!��なので　����P�P��　これより　P�

��

�
 ����

　ここで、P�は整数なので、�P ������������…������のとき� P$ � �P �$ �

すなわち� �$ � �$ � �$ �……� ��$ ! ��$ ! ��$ !……! ��$ �

これより� P$  P��& �の最大となる�P�の値は����である。

また、� U3  
�

� 
P��&
����
 

�
� 
P$
����
なので、� P$ �が最大になる�P�の値と� U3 �が最大になる�P�の

値は同じなので、� U3 �が最大となる�U�の値は、�U ���� ����となる。……（答）

　ようやく解き終わった、という感じである。答えの U3  
�

� 
P��&
����
�は早くから見つけたが、

それが何故なのか、という理由付けに頭を悩ました。実際の試験会場では、適当にごまか

して答えを書いてしまう気がするが、果たして何点貰えるのだろうか。数学的帰納法で証

明することも一瞬考えたが、� �
� 
P��& �という綺麗な場合の数になっているので、是非とも

納得できる理由を付けたかった。上の結合子というアイデアは苦肉の策のような気がする

が、果たして納得できるだろうか。かなりの時間を費やしたのは事実である。本番ではこ

のようなアイデアは思い浮かばないと思うが、もっとエレガントな解答があるような気も

するが、第６問の数学としての解答�解説は以上にする。

　次にこの問題を3\WKRQを使って分析しようと思うが、�����回のコインを投げを全てチ



ェックするのも大変、というかあまり意味を感じないので、3\WKRQを使ってベクトル表

示も可能である、という趣旨で次のプログラムを作成した。

���������������������WRN\RB��B��B12�����������

LPSRUW�QXPS\�DV�QS

LPSRUW�PDWSORWOLE�S\SORW�DV�SOW

GHI�GHVFDUWHV�D[��UDQB[��UDQB\��D[BWLWOH�[BODEHO� ��[���\BODEHO� ��\���

座標軸の設定はよく使うので関

数として定義した。

関数名はデカルトに敬意を表し

てGHVFDUWHVとした。�

KWWSV���S\WKRQ�DWHOLHUNREDWR

�FRP�TXLYHU�　を参考にしまし

た。ありがとうございます。

����D[�VHWB[ODEHO�[BODEHO��IRQWVL]H� ����

����D[�VHWB\ODEHO�\BODEHO��IRQWVL]H� ����

����D[�VHWB[OLP�UDQB[>�@��UDQB[>�@�

����D[�VHWB\OLP�UDQB\>�@��UDQB\>�@�

����D[�VHWBWLWOH�D[BWLWOH��IRQWVL]H� ����

����D[�JULG��

����D[�D[KOLQH����FRORU� ��EODFN��

����D[�D[YOLQH����FRORU� ��EODFN��

GHI�GUDZBYHFWRU�D[��VBSRLQW��HBSRLQW��FRORU� ��EOXH���

����D[�TXLYHU�VBSRLQW>�@��VBSRLQW>�@��HBSRLQW>�@��HBSRLQW>�@��

ベクトルの描画を関数として定

義した。

始点と終点、そして色を使って

描画できる。

　　　　　　FRORU� �FRORU��DQJOHV� �
[\
��

　　　　　　VFDOHBXQLWV� �
[\
��VFDOH� ���

ILJ� �SOW�ILJXUH�ILJVL]H� ��������

D[� �ILJ�DGGBVXESORW�����

GHVFDUWHV�D[��>������@��>������@��7RN\R�8QLYHUVLW\������0DWK�TX���12���

要素が２００個のリストを作成

しているが、�を表、�を裏、と

している。

���回まで、表の回数を�～��個

と順次増やしている。

最後の��回で終点が原点に戻る

ように調整している。

Q >@

IRU�L�LQ�UDQJH�����

����Q Q�>�@
L�>�@

Q Q�>�������������������@

Q Q�>�������������������@�

Q Q�>�@
�

Uは表の回数　Nは裏の回数

YVは描画するベクトルの始点

U �

N �

YV >����@

最初に作成したリストQに従って

ベクトルを表示する。

IRU�L�LQ�UDQJH������

����LI�Q>L@�  ���

��������U�� ��



��������LI�L�������DQG�Q>L��@�� ���

������������Y� �QS�DUUD\�>QS�FRV��
N
QS�SL����QS�VLQ��
N
QS�SL���@�

������������GUDZBYHFWRU�D[��YV��U
Y���L�������L������L�������

要素が�のときは、次の要素が�な

らば描画するが、�ならば描画しな

い。�L�������L������L������は5*

%での色の指定で特に意味はない。

������������YV �YV�U
Y

������������U ���������������

����HOVH�

��������N�� ��

Q� >�裏��LI�YDOXH  ��HOVH�YDOXH�IRU�YDOXH�LQ�Q@

Q� >�表��LI�YDOXH  ��HOVH�YDOXH�IRU�YDOXH�LQ�Q�@

SULQW��コイン投げの回数は、��OHQ�Q��

SULQW��そのパターンは��Q��

SULQW��裏の回数は、��VXP�Q��

SULQW��表の回数は、��OHQ�Q��VXP�Q��

SOW�VKRZ��

���������������������S\WKRQ�SURJUDP����������

［出力］

コイン投げの回数は、����
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裏の回数は、���

表の回数は、����

以上で第６問の解説�解答を終わる。

　２０２２年の東京大学　数学（理系）の入試問題を振り返ってみて、各大問の中にある

小問の����まではそれ程難しくないだろう。戦略として、まずは全問を一通り読んでみて���

ぐらいまでは解答をして、その後、完答出来そうな問題を集中して解いていく、というこ

とかな、と思う。それでは各問の難易度をもう一度振り返ってみる。

　第１問は、極めて基本的な問題だろう。数学Ⅲの教科書を終えた後に力試しに解いてみ

る問題として良問と思う。

　第２問は、����を数学的帰納法で証明しよう、と気付いたらそれ程難しくないだろう。

しかし、����の必要十分条件については、これかな、と予想は出来そうだが、それを証明

するには、余りの形に再度漸化式を使うんだ、と気付かない限り無理と思う。����の証明

がなくても、����の答えだけなら出そうだが、果たして点数は貰えるのか定かではない。

　第３問は、まず問題文を読んで図が描けるかどうかであろう。描けたなら����はそれ程

難しくなく、��������も図から求められる。

　第４問は、����はそれ程難しいとは思わないが、様々なアプローチの仕方があるだろう。

　第５問は、難問だろう。図のイメージを掴むのが難しい。

　第６問は、����は簡単であるが、����の答えを導き、さらに証明が難しいだろう。

　最後に、集中する、というのが問題を解く鍵である。歩く方向も全く分からない暗闇の

中に、突然光が差し、辺りを明るくし、遠くにあるゴールまで見渡せる道を見つた喜びを

味わえるのは、やはり普段の地道な努力、過去問を必死に解いている、という地道な努力

があればこそ、だと思う。つまり、過去問を解くときも本番のつもりで集中して解くこと

が大事ということである。最後は月並みな言葉になってしまったが以上で解説は終わる。


