
２０２２年度��北海道大学����数学��理�
(;&(//1(7な高校生のための入試問題解説

　北海道大学の入試問題を実際にその場で解くことを想定して解

説する。通常の解説本と何が違うのかと言えば、解法を見つけ出

すまで、かなりの試行錯誤を繰り返すと思うが、その解答に至る

までの思考の過程を中心に解説している。さらに、3\WKRQシリ

ーズとしての本なので、プログラムが出来る箇所はプログラミン

グを試みる。

　難関大学の入試問題を解くとき、現役時代ならまるで神の啓示

でもあったかのように解き方が見えてきたが、年齢を重ねるにつ

れてそのようなことはなくなってしまった。さらに５題を続けて

考えきる知力�体力もなくなった。有名な解説本は、そのような

啓示と知力�体力を持っている人が書いていると思われる。しか

し、その解法はその場で思い付かないよな、というものも多く見

受けられる。寧ろ、普通の人である著者の解説本の方が分かりや

すいのではないか、と自画自賛しながら書いている。

����の解法

　I� 
[  [�[ 
�� � �[ 
�D �[ 
�E �は、まずこの絶対値を場合分けをして外さないといけない。

����はその場合分けの一つを示している問題のようである。
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　[���および�[!��から�[�[ 
�� !��になるので

　　　　　　　　　　　�� [�[ 
��  [�[ 
�� �となる。

　��D�E�� �から�　　��[ 
�D �[ 
�E !��となるので

　�����������������　　　　　�� �[ 
�D �[ 
�E  �[ 
�D �[ 
�E �となる。�

　　　　　����以上から�　I� 
[  [�[ 
�� � �[ 
�D �[ 
�E �

　　　　　　　　������������������� � �[ � �D�E 
�� [�DE �　となる。



　ここで、�I� 
[ �は最小値�P�をもつとしていて、�I� 
[ !P�になることを示す、とはどういうことなの

だろうか。悩みに悩む。最小値とは当然それが一番小さいのだから、当たり前のような気がする。

最小値が�P�なのだから、当然それよりは大きいのは当たり前である。何が言いたいのだろうか。
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そこで、ふっと気付く。

図���のような図にはなってはいけない。

つまり、�[���������[ �の範囲に最小を持ってはいけない。

もし持ったならば�I� 
[ �P�となり、�I� 
[ !P�とはならない。

I� 
[ � �
�[ � �D�E 
�� [�DE�は２次関数（放物線）で、

この放物線の軸は�
��D E �
�

�である。
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���なので軸は�[ ��と�[ ��の間にある。

基本的に図���の形になると思うが、最初見たときは、場合分けを

して絶対値を外す必要はないのかな、楽勝かも、と思ったのが大き

な間違えだった。しかたなく、全ての場合分けを考えてみる。

　　　　�ⅰ�　　��ⅱ����������ⅲ�　�����ⅱ�　�����ⅰ�

この数直線を参考にして場合分けをする。

　　　　　　�ⅰ��[����または�[!��のとき

　　�　　　　　　I� 
[  [�[ 
�� � �[ 
�D �[ 
�E �

　　　　　　　　　　� � �[ � �D�E 
�� [�DE �

　　　　　　�ⅱ����[�D �または�E�[���のとき

　　�　　　　　　I� 
[  �[�[ 
�� ��[ 
�D �[ 
�E �

　　　　　�　　　　　 ���D 
�E [�DE�

　　　　　　�ⅲ��D�[�E�のとき

　　�　　　　　　I� 
[  �[�[ 
�� ��[ 
�D �[ 
�E �

　　　　　　　　　　� �� �[ ��D�E 
�� [�DE�

ここで�I� 
�  DE�、�I� 
D  �
�D �D、�I� 
E  �

�E �E�、�I� 
�  ��D�E�DE �の大小関係を調べる。

　�D�E���のとき　
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�E !��より�����������I� 
D !I� 
� �

　　�I� 
E �I� 
D  �D 
�E �D�E 
�� !��より�I� 
E !I� 
D �

�����　I� 
� �I� 
E  �E 
�� ���D 
�E !��より��I� 
� !I� 
E �

���������以上より���I� 
� �I� 
D �I� 
E �I� 
� �となる。

���������左図���より　�[�が実数の範囲を動くとき、

　　最小値�P I� 
�  DE �となる。
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　�D�E���のとき　�

　　D�E���のときと全く逆になるので

　　I� 
� �I� 
E �I� 
D �I� 
� �となる。

　　左図���より　�[�が実数の範囲を動くとき、

　　最小値�P I� 
�  ��D�E�DE�となる。

以上より　�[���および�[!��では�I� 
[ !P�になる。

�

����　����の解法の中にある図で����を示している。ということは、����はもっと簡単に示していいのだろ

う。問題文の中の「�I� 
[ �は最小値をもつとする。」という仮定から、放物線の軸が�区間［�����］にあ

ることを示すだけで良いのかもしれないが、真正直に絶対値を外した方が、解けた気分にはなる。
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����の解法

��ⅰ��D�E���のとき　�����から�P I� 
�  DE �

　�D
��とすると�E 
P
D
……① �

　���D�E�� �かつ�E��D���

　の領域を図示すると右図になる。

　この図より�P�の最大値は①と

　�E �D���が接するときである。

　
P

D
 �D���から �D �D�P ��となる。

　接するので判別式�' ��

　すなわち����P ��

　よって、�P 
�

�
�

�ⅱ��D�E���のとき　�����から�

　P I� 
�  ��D�E�DE

　�D
��とすると�E 
P
�D �
��……②�

　右図より�P�の最大値は②と

　�E �D���が接するときである。

　
P
�D �
�� �D���

　 �D �D�P ���上と同様にして�、P 
�

�
�

　�ⅰ�、�ⅱ�より、�P�の最大値は
�

�
である。�

以上で�１�の解答を終わる。この問題の3\WKRQでの分析は割愛する。



����� Q23  QS �　 Q24  QT とおいて、まず問題文の形を整理してみる。

　� Q3 �Q �3  �Q �S � QS �　� Q3 Q4  QT � QS �　� Q4 �Q �4  �Q �T � QT となり、

　　　� Q3 �Q �3  �� 
�D Q3 Q4 から�　 �Q �S � QS  �� 
�D � QT 
� QS ……①

　　　� Q4 �Q �4  � �����
�QD

�� D
から�　 �Q �T � QT  � �����

�QD

�� D
����������……② �

要するに、①と②から� Q[ �の漸化式が作れそうである

①より� QT  
��Q �S D QS

�� D
�となって、これより� �Q �T � QT  

���Q �S � 
�� D �Q �S D QS

�� D
�

さらに　� QS  � 
Q[ ��� Q\ �なので　

　　　　� �Q �T � QT  � �
���Q �[ � 
�� D �Q �[ QD[

�� D
���

���Q �\ � 
�� D �Q �\ QD\

�� D
�

　　　これと②から　
���Q �[ � 
�� D �Q �[ QD[

�� D
 ��　

　　　よって　� �Q �[  �� 
�D �Q �[ � QD[ �………�答�

��������の漸化式は隣接３項間の漸化式であり、それに関する教科書の内容を抜粋する。

�����������������������数学%（数研出版）��������������

発展　隣接３項間の漸化式

　次の条件によって定められる数列�� �QD �の一般項を求めてみよう。

　　　　　　　 �D  �， �D  �，

　　　　　　　 �Q �D �� �Q �D �� QD  �　……�①

　D�E �，DE ��を満たす���つの数�D，E�を見つければ，漸化式�①�は

　　　　　　　 �Q �D ��D 
�E �Q �D �DE QD  �

すなわち　　　 �Q �D �D �Q �D  E� �Q �D 
�D QD の形に変形できる。

　ここで，D�E �，DE ��を満たす���つの数�D，E�は，��次方程式�

�[ ��[�� ��の���つの解であり，それは���と���である。



��D �，E �

��D �，E �

　よって，漸化式�①�は次の���通りに変形できる。

　　　　　　　 �Q �D �� �Q �D  �� �Q �D 
�� QD 　……�②

　　　　　　　 �Q �D �� �Q �D  �� �Q �D 
�� QD 　……�③

　②�から，数列�� �Q �D ��� QD �は初項� �D �� �D  �，公比���の等比数列で

　　　　　　　 �Q �D �� QD  
�Q �� 　……�④

　③�から，数列�� �Q �D ��� QD �は初項� �D �� �D  �，公比���の等比数列で

　　　　　　　 �Q �D �� QD  
�Q �� 　……�⑤

④�⑤ �から，求める一般項は　　 QD  
�Q �� � �Q ��

　S，T�は���でない定数とする。一般に，漸化式� �Q �D �S �Q �D �T QD  ��

について，��次方程式� �[ �S[�T ��の���つの解が�D，E�であるならば，

この漸化式は次のように変形できる。

　　　　　　　　　　 �Q �D �D �Q �D  E� �Q �D 
�D QD

【注意】解に���が含まれるとき， �Q �D � �Q �D  N� �Q �D 
� QD �の形に変形できる。こ

　　　　の場合，数列�� �QD �の一般項を求めるのに，階差数列�� �Q �D �� QD �が利用で

　　　　きる。

�����������������ここまで「数学%（数研出版）」からの引用���������

これより� �Q �[ �を� �[ �、� �Q �[ �を�[�、� Q[ �を���とおき��
�[ ��� 
�D [�D ���の２次方程式を作る。これ

を解くと　�[ ����D �となり、解に��が含まれている。

つまり、����の漸化式は� �Q �[ � �Q �[  D� �Q �[ 
� Q[ �と式変形できる。

ここで階差数列の公式を示そう。

数列�� �QD �の階差数列を�� �QE �とすると，

Q���のとき　　 QD  �D �
 N �

�Q �

& NE �

�� �Q[ �の階差数列�� �Q �[ �� Q[ �は初項� �[ � �[  ��� ���公比�D�の等比数列なので

Q���のとき� Q[  �[ �
�� �Q �D

�� D
 
�� �Q �D

�� D
……① �

Q ��のとき　� �[  ��　これは①に含まれる。

　　　　　よって、� Q[  
�� �Q �D

�� D
�……�答�

�����　����から

　　�� �Q �T � QT  � �
���Q �[ � 
�� D �Q �[ QD[

�� D
���

���Q �\ � 
�� D �Q �\ QD\

�� D
……① �

　　��さらに、 �Q �T � QT  � �����
�QD

�� D
�������……② �なので



　　�� �Q �\ � �� 
�D �Q �\ � QD\  �QD �、�� �Q �\ � �Q �\  D� �Q �\ 
� Q\ � �QD �となる。

　　　ここで、� �Q �\ � Q\  Q] �とおくと、� �Q �]  QD] � �QD ……③�

�　　　③の両辺を� �QD �で割る、つまり� QD �を掛けると� QD �Q �]  �Q �D Q] ��

　　　�さらに、�両辺にD�を掛けると� �Q �D �Q �]  �D QD Q] �D�

　　　ここで� QD Q]  QF �とおくと� �Q �F  �D QF �D……④ �となる。

　　　� �Q �F �と� QF �を共に�F�とおくと解くと�F 
D

�� �D
�、④の両辺から�F�を引くと

　　　� �Q �F �
D

�� �D
 �D � QF ��

D

�� �D
�と式変形ができ、これは数列�� QF ��

D

�� �D
�は

　　　初項� �F �
D

�� �D
 D�

D

�� �D
 
� �D

�� �D
�、公比� �D �の等比数列である。

　　　�よって　 QF �
D

�� �D
 
� �D

�� �D
･ �Q �
� 

�D �　すなわち� QF  

�� ��Q �D D

�� �D
�となる。

　　　�ここで� QD Q]  QF �、� �Q �\ � Q\  Q] �としたので、元に戻すと

　　　� �Q �\ � Q\  
�
QD � �

�� ��Q �D D

�� �D
 

�

�� �D ��
�Q �D ��

�Q �

� �
�

D

　　　�さらに、数列�� �Q �\ �� Q\ �は数列�� �Q\ �の階差数列なので

数列�� �QD �の階差数列を�� �QE �とすると，

Q���のとき　　 QD  �D �
 N �

�Q �

& NE �

　　　階差数列から一般項を求める次の公式を使う。

　　　�Q���のとき　� Q\  �\ �
 N �

�Q �

&
�

�� �D � ��� �N �D
�N �

� �
�

D

　　　　　　　　　　　 
D

�
� 
�� D

�
�

�� �D

� �D � 
�� D

�� D
�

��
�Q �

� �
�

D

��
�

D

�

　　　　　　　　　　　 
��Q �D ��Q �D

� 
�� D �
� 
�� D

������������Q ��のとき　� �\  
D

�
� 
�� D

は上の式に含まれる。�

　　　　　　　　　　よって、� Q\  
��Q �D ��Q �D

� 
�� D �
� 
�� D

�………�答�

それでは、この問題を3\WKRQ�を使って図を描いてみよう。

�������������������KRNNDLGRB��B��B12�����������������

LPSRUW�QXPS\�DV�QS

LPSRUW�PDWSORWOLE�S\SORW�DV�SOW

LPSRUW�UDQGRP

GHI�GHVFDUWHV�D[��UDQB[��UDQB\��D[BWLWOH�[BODEHO� ��[���\BODEHO� ��\���



座標平面（�[\�平面）の設定

[軸ラベルの設定：フォントサイズ���

\軸ラベルの設定：フォントサイズ���

[軸の範囲の設定�：[� �� �から�[� �� �まで

\軸の範囲の設定�：\� �� �から�\� �� �まで

グリッド（格子）の表示

軸の色の設定

����D[�VHWB[ODEHO�[BODEHO��IRQWVL]H� ����

����D[�VHWB\ODEHO�\BODEHO��IRQWVL]H� ����

����D[�VHWB[OLP�UDQB[>�@��UDQB[>�@�

����D[�VHWB\OLP�UDQB\>�@��UDQB\>�@�

����D[�VHWBWLWOH�D[BWLWOH��IRQWVL]H� ����

����D[�JULG��

����D[�D[KOLQH����FRORU� ��EODFN��

����D[�D[YOLQH����FRORU� ��EODFN��

GHI�GUDZBYHFWRU�D[��VBSRLQW��HBSRLQW��FRORU� ��EOXH���

����D[�TXLYHU�VBSRLQW>�@��VBSRLQW>�@��HBSRLQW>�@��HBSRLQW>�@��FRORU� �FRORU�

��������������DQJOHV� �
[\
��VFDOHBXQLWV� �
[\
��VFDOH� ���

ベクトルの表示（TXLYHU）

�始点�� 
VBSRLQW� �� ���VBSRLQW� �� 変化量�� 
HBSRLQW� �� ���HBSRLQW� �� �

　始点�� 
VBSRLQW� �� �　　　　　　　終点���VBSRLQW� �� 
�HBSRLQW� �� �

GHI�[BUHF�Q��

漸化式（UHFXUVLRQ）

�[  ��　� �[  �

Q���のとき

Q[  �� 
�D �Q �[ � �Q �D[ �

����LI�Q�  ��

��������UHWXUQ��

����LI�Q  ��

��������UHWXUQ��

����HOVH�

��������UHWXUQ����D�
[BUHF�Q����D
[BUHF�Q���

漸化式（UHFXUVLRQ）

�\  
D

�
� 
�� D

�　� �[  
���D D �
�

� 
�� D

Q���のとき

Q\  �� 
�D �Q �\ � �Q �D\ �
�
QD
�

GHI�\BUHF�Q��

����LI�Q�  ��

��������UHWXUQ�D����D�

�

����LI�Q  ��

��������UHWXUQ��D

��D�������D�

�

����HOVH�

��������UHWXUQ����D�
[BUHF�Q����D
[BUHF�Q������D

Q

Q ����Q�の最大値の設定

　D�は�D
��の正の実数であり、漸化式の中に QD があるので、

漸化式の�Q�の値を大きくするとオーバーフローを起こすのを

避けるためと、見やすいグラフ用に�Q�の最大値を��にした。

Q �

ILJ� �SOW�ILJXUH�ILJVL]H� ��������

D[� �ILJ�DGGBVXESORW�����

WLWOH�� ��+RNNDLGR�8QLYHUVLW\������0DWK�TX����

GHVFDUWHV�D[��>������@��>������@�WLWOH��



試行錯誤の結果、�D�の値を上の��通りにした。

Q\ �の漸化式の中にある�
�
QD
�より、���D���のときは、�Q�の値が増加すると�

\�の値は急激に増加し、�D!��のときは、平坦に増加する。

DBOLVW� �>�����������������������������������������@

YV�YH >@�>@

YHB[�YHB\�YVB[�YVB\ �������

YV�はベクトルの始点、�YH�は変化量だがそれを終点とし

て表示する。さらに色の設定にUDQGRP関数を使ってお

り、カラフルになるようにした。

IRU�D�LQ�DBOLVW�

����IRU�L�LQ�UDQJH���ｎ����

��������YV >YVB[�YVB\@

��������YHB[� �[BUHF�L�

��������YHB\� �\BUHF�L�

��������YH >YHB[�YHB\@

��������GUDZBYHFWRU�D[��YV��YH���UDQGRP�UDQGRP���

　　　　　UDQGRP�UDQGRP���UDQGRP�UDQGRP����

描画したベクトルの終点を始点として、ベクトルが連続

して描画されるようにした。

��������YVB[�� �YHB[

��������YVB\�� �YHB\

D�の値を最後のベクトルの終点に表示する

����D[�WH[W�YVB[�YVB\��D ���VWU�D��

����YHB[�YHB\�YVB[�YVB\ �������

SOW�VKRZ��

���������������������S\WKRQ�SURJUDP����������������

［出力］

　これが数学的に意味があるかどうかは別にして、なかなか綺麗なベクトルのグラフである。漸化式

をどのようにプログラミングするか、ということになって、なかなか面白い題材であった。

以上で２�の解答�解説は終わる。



������ [� � \[ � �[ �より��
�[� \[ ……①

�\[ �[ ……②
　とおく。

　　　　　　①より�　ORJ [� �ORJ \[ �

　　　　　　　　　　�[ORJ��\ORJ[ �

　　　　　　�[���より�ORJ[!��なので　�\�
[ORJ�

ORJ[
……①��

　　　　　　　　　　　②より　�\��……②� �

　　　　　　領域の境界線は�I� 
[  
[ORJ�

ORJ[
……③ �　�\ �……④�となる。

　　　　　　③より　I�� 
[  
�ORJ�ORJ[ ･[ORJ�

�

[
�

� �ORJ[
 
ORJ� � 
�ORJ[ �

�
� �ORJ[

�

　　　　　　�

[ � … H …

I �� 
[ ��� �� � ��

I� 
[ � � 極小 �

�　　極小値�I� 
H  HORJ� �

　　　　　　さらに、�I� 
[  ��とおくと　�
[ORJ�

ORJ[
 �������

ORJ[

[
 
ORJ�

�
�

��������������������　�ここで�
ORJ�

�
 
�ORJ�

�
 
ORJ�

�
�なので、�[ ��または�[ ��

[�

\�

H��� ��

��

2�

\ ��

I� 
[  
[ORJ�

ORJ[
�

　　　　　　　　　　　　　　　　　　　　　　　　　求める領域は左図の斜線部分

　　　　　　　　　　　　　　　　　　　　　　　　　ただし、境界線は含む

　　　　　　　　　　　　　　　　　　　　　　　　　　……（答）



�������領域を表す不等式は����[���と�
\[ 
� [� �

D[ 
� \[ ���より��
\[ 
� [� �

\[ 
� D[ ���

　　これより、境界線は� \[ � [�  ��より�\ 
[ORJ�
ORJ[

……① �

　　　　　　�　　　　　 \[ � D[  ��より�\ D……②�

　　　　　　　　　　　さらに直線��[ ��と�[ ��

[�

\�

H��� ��

��

2�

I� 
[  
[ORJ�

ORJ[
�

\ D��
H�ORJ���

��

�ORJ�

ORJ�
�

[�

\�

H��� ��

��

2�

I� 
[  
[ORJ�

ORJ[
�

\ D��
H�ORJ���

��

�ORJ�

ORJ�
�

D� E�

　　�ⅰ�　���D�HORJ� �のとき

　　　　図より

　　　　�6� 
D  ' �
�

� ��
[ORJ�

ORJ[
D G[ �

　ここで'  
[ORJ�

ORJ[
G[ �)� 
[ &�とおくと

　　　　�6� 
D  )� 
� �)� 
� ��D �

　　　　�
G
GD

6� 
D  ����……①�

　　�ⅱ�　�HORJ��D����のとき

　　　　�
[ORJ�
ORJ[

 D �を満たす実数�D�

　　　　の値は２個ある。それをD、E

　　　　����D�E 
�� �とおくと

　　　　�6� 
D  ' �
D

� ��
[ORJ�

ORJ[
D G[�

�　　　　�　�　��' D

E

� ���
[ORJ�

ORJ[
D G[�

　　　　�　�　���' E

�

� ��
[ORJ�
ORJ[

D G[�

　　　　��������� )� 
D �)� 
� �D�D 
�� �)� 
E �)� 
D �D�E 
�D �)� 
� �)� 
E �D�� 
�E �

　　　　�　���� �)� 
D ��)� 
E �)� 
� �)� 
� ��D�D�E 
�� �

　　　　�
G

GD
6� 
D  �

G

GD
)� 
D ･

GD

GD
��

G

GE
)� 
E ･

GE

GD
���D�E 
�� ��D�

GD

GD ��
GE

GD
�

　　　　�'
[ORJ�

ORJ[
G[ )� 
[ �& �より�

G

G[
)� 
[  

[ORJ�

ORJ[
�

　　　　さらに�
G

GD
)� 
D  

DORJ �

ORJD
 D �、�

G

GE
)� 
E  

EORJ�

ORJE
 D �なので

　　　　�
G

GD
6� 
D  

�DORJ�

ORJD
･
GD

GD
�
�EORJ�

ORJE
･
GE

GD
���D�E 
�� ��D�

GD

GD ��
GE

GD
�

　　　　　 �D･
GD

GD
��D･

GE

GD
���D�E 
�� ��D�

GD

GD ��
GE

GD

　　　　　� ��E�D 
�� !�……②�



[�

\�

H��� ��

��

2�

I� 
[  
[ORJ�

ORJ[
�

\ D��

H�ORJ� ��

��

�ORJ�

ORJ�
�

E�

　　�ⅲ�　���D�
�ORJ�
ORJ�

�のとき

　　　　�6� 
D  ' �
E

� ���
[ORJ�
ORJ[

D G[�

　　　　�　�　��' E

�

� ��
[ORJ�

ORJ[
D G[�

　　　　　　� �)� 
E �)� 
� �D�E 
�� �

　　　　　　�　�)� 
� �)� 
E �D�� 
�E �

　　　　　　� )� 
� �)� 
� ��)� 
E �D��E 
�� �

　　　　�
G
GD

6� 
D  ��
G
GE

)� 
E ･
GE
GD
���E 
�� �D� ��

GE
GD
�

　　　　　　　　 ��D･
GE
GD
� ��E 
�� ��D

GE
GD
 ��E 
�� !�……③�

[�

\�

H��� ��

��

2�

\ D��

H�ORJ���

��

�ORJ�

ORJ�
�

E�

　　�ⅳ�　�D!
�ORJ�
ORJ�

�のとき

　　　　�6� 
D  ' �
�

� ���
[ORJ �

ORJ[
D G[�

　　　　　　� �)� 
� �)� 
� ��D �

　　　　　
G
GD

6� 
D  �!�……④ �

①、②、③、④より

　　　　　　　

D � … HORJ� … � …
�ORJ�

ORJ�
…

G

GD
6� 
D � �� � �� � �� � ��

6� 
D � � 最小 � � � � ��

�

　よって、上の増減表より�6� 
D �を最小にする�D�の値は�HORJ� �となる。……（答）

　以上が�����の解答であるが、�最初に'
[ORJ�

ORJ[
G[�を積分できるかどうか悩んだ。当然、�'

ORJ[

[
G[

 
�

�
�

� 
ORJ[ �&となって、分子と分母が逆ならばすぐに積分できる。多少考えてみたが�、もう一度

問題を読んでみたら、最小となる�D�の値だけで良いので、無理矢理積分をしなくても答えが出そうな

ので、'  
[ORJ�
ORJ[

G[ )� 
[ �&と置いた。

　次に悩んだのは、�
[ORJ �
ORJ[

 D�を解く、ということである。しかし、これも無理と諦め、この解をD、

Eとし、さらにこのD、Eが�D�の関数である、ということに気を付けて解いた。

　それではこの問題を3\WKRQを使って分析してみよう。まずは、�'
[
ORJ[

G[�が3\WKRQ�の6\PS\を

使って出来るかどうか、試してみる。



�������������������KRNNDLGRB��B��B12�����������������

LPSRUW�V\PS\�DV�V\P

LPSRUW�QXPS\�DV�QXP

LPSRUW�PDWK

[�D� �V\P�V\PEROV��[�D��

IURP�V\PS\�LPSRUW�VLQ��FRV��ORJ

I�� �[�ORJ�[�

)�� �V\P�LQWHJUDWH�I��[�

SULQW��I� ��I��

SULQW��)� ��)��

���������������������S\WKRQ�SURJUDP����������������

［出力］

I� �[�ORJ�[�

)� �(L��
ORJ�[���

なんと、3\WKRQの6\PS\�では積分をしている。�その結果である(L� 
�ORJ[ �を調べてみると、(L�と

は指数積分（([SRQHQWLDO�LQWHJUDO）で�(L� 
[  '�

[ WH

W
GW�とのことである。すなわち�

'  
[

ORJ[
G[ �'�


�ORJ[ WH

W
GW &�ということのようである。果たして、これで積分したと言って良いのか

どうか、数学科を卒業してから後６年で半世紀になる私にとって、全く意味不明の指数積分である。

　これだけでは面白くないので、やはりここでは�\ 
[ORJ�
ORJ[

�のグラフを描こう。

�������������������KRNNDLGRB��B��B12�����������������

LPSRUW�QXPS\�DV�QS

LPSRUW�PDWSORWOLE�S\SORW�DV�SOW

LPSRUW�PDWK

GHI�GHVFDUWHV�D[��UDQB[��UDQB\��D[BWLWOH�[BODEHO� ��[���\BODEHO� ��\���

����D[�VHWB[ODEHO�[BODEHO��IRQWVL]H� ����

����D[�VHWB\ODEHO�\BODEHO��IRQWVL]H� ����

����D[�VHWB[OLP�UDQB[>�@��UDQB[>�@�

����D[�VHWB\OLP�UDQB\>�@��UDQB\>�@�

����D[�VHWBWLWOH�D[BWLWOH��IRQWVL]H� ����

����D[�JULG��

����D[�D[KOLQH����FRORU� ��EODFN��

����D[�D[YOLQH����FRORU� ��EODFN��

ILJ� �SOW�ILJXUH�ILJVL]H� ��������

D[� �ILJ�DGGBVXESORW�����

WLWOH�� ��+RNNDLGR�8QLYHUVLW\������0DWK�TX���12��



GHVFDUWHV�D[��>�����@��>�����@�WLWOH��

[� �QS�OLQVSDFH����������

\� �[
QS�ORJ����QS�ORJ�[�

D[�SORW�[��\���FRORU� ��EOXH��

D� �QS�H

E� �D
QS�ORJ����QS�ORJ�D�

D[�SORW�D��E���PDUNHU ����PDUNHUVL]H ��FRORU �UHG��

SOW�VKRZ��

���������������������S\WKRQ�SURJUDP����������������

［出力］

　これが3\WKRQ�で出力した�\ 
[ORJ�
ORJ[

�のグラフである。解説の中にある図は、形を予想して見やす

いように図形作成ソフトで手書きしたものである。予想したイメージとほぼ同じであることが確認で

きた。以上で����の解説は終わる。



����これは円順列の基本問題である。数学Ａの教科書の該当箇所を以下に示そう。

�����������������������数学Ａ（数研出版）�������������

$　円順列

例��　$，%，&，'，(�の���人が輪の形に並ぶときの並び方の総数

　　　例えば，下の図のように，回転すると一致する並び方は同じ並び

　　　方であると考える。

%

$

(

& '

$

(

'

% &

(

'

&

$ %

'

&

%

( $

&

%

$

' (

　　　��人が輪の形に並ぶには，まず���人が���列に並ぶ順列を作り，そ

　　　のまま反時計回りに円形に並んで両端の人が隣り合うようにす

%

$

(

& '

　　　ればよい。この方法で輪を作ると，例えば

　　　　　　$%&'(，%&'($，&'($%，

　　　　　　'($%&，($%&'

　　　の���通りの順列からは，右の図と同じ並び

　　　の輪が得られる。

　　　��人が���列に並ぶ順列は� ��3 �通りあり，それらから上で述べた

　　　方法で輪を作ると，��通りずつが同じ並びの輪になる。

　　　よって，��人が輪の形に並ぶときの並び方の総数は

　　　　　　　　　　　　
��3

�
 �� ��　　　　　　　　　　　W

�����������������ここまで「数学Ａ（数研出版）」からの引用��������

　教科書の例は、異なる５個の文字の円順列であるが、同じものが含む文字の並び方でも使える。こ



の例として、ＡＡＡＢＣの円順列を考える。１列に並べる並び方は�
��
��
 ���通りで、それを円にする

場合、例えばＡＡＡＢＣ、ＡＡＢＣＡ、ＡＢＣＡＡ、ＢＣＡＡＡ、ＣＡＡＡＢの５通りは同じものな

ので、ＡＡＡＢＣの円順列は�
��

��
･
�

�
 ��である。

$

$$

% &

$

$

$

%

&

$

$$

%

& $

$

$%

&

����　�$'+,..22より、全事象の数を�Q� 
8 �とおくと、�Q� 
8  
��

����
･
�

�
 �����となる。

さらに時計回りに+2..$,'2となる事象$とおくと、�Q� 
$  ��である。

よって、求める確率�3� 
$  
�

����
�……（答）

����　隣り合う子音が存在する」というのを直接考えたら、かなり大変な作業になる。

　つまり、'+..$,22、'+.$.,22、'+$..,22、……などである。これを場合分けをして

考えるのは不可能に近いので、この否定（余事象の確率）を考えることにした。つまり、「隣り合う

子音が存在する」の否定は「隣り合う子音が存在しない」であるが、これをもう少し丁寧に読み替え

ると、「隣り合う子音が少なくとも１つ存在する」の否定は「隣り合う子音が全く存在しない」であ

る。「隣り合う子音が全く存在しない」という例を示す。�

' $ + , . 2 . 2
　

このように、子音の間に母音が入る、ということである。このパターンは母音が最初に来る２通りが

'$ + , . 2 . 2
ある。

その事象を%とおくと、�Q� 
%  
��

��
･
��

��
･�･
�

�
 ���

よって、確率�3� 
%  
��

����
 
�

��
�なので、求める確率�3� 
%  ��

�

��
 
��

��
�……（答）

���　「隣り合う子音が存在する」という条件の下に「隣り合う子音が..である」という条件付き確

率である。ここで条件付き確率に関する教科書を掲示する。

�����������������������数学Ａ（数研出版）�������������

$

8

$�%

%

　各根元事象が同様に確からしい試行において，その全事象を�8�とする。

また，$，%�を���つの事象とし，Q � 
$ 
��とする。このとき，

条件付き確率� $3 � 
% �は，$�を全事象とした場合の事象�$�%�

の起こる確率と考えられ，次のように表される。

　　　　　　　　 $3 � 
%  
Q � 
$�%

Q � 
$
　……�①



　①�の右辺の分母と分子を�Q � 
8 �で割ると，
Q � 
$
Q � 
8

 3 � 
$ ，
Q � 
$�%
Q � 
8

 3 � 
$�% �であるから，

次の等式が得られる。

　　　　　　　　　　　　　　　　 $3 � 
%  
3 � 
$�%

3 � 
$
　……�②

�����������������ここまで「数学Ａ（数研出版）」からの引用��������

����の解法で「隣り合う子音が存在する」という事象を�% �としているので、「隣り合う子音が..だけ

である」という事象を&とおくと、求める確率は�3
%� 
& �となる。

�上の②から、3 %� 
&  
3� 
&�%

3� 
%
となるので、����から�3� 
%  

��

��
より、�3� 
&�% �を求めればよい。

�　ここで&�% �とは「隣り合う子音があって、その子音は..だけである」ということである。

　要するに、子音..を１組の子音と考え、����の解法で示したように、下記のように子音と母音が交

互にでるパターンを求めればよい。

母 子 母 子 母 子 母

母 子母 子母 子 母

母 子 母 子母 子 母

　

母 子 母 子母子 母

母 子母子 母 子 母

母 子 母子 母 子 母

母 子 母子 母子 母

ここで、母音は$,22、子音は'+..��なので�Q� 
&�%  
��
��
･��･�･

�
�
 ���

よって、求める条件付き確率�3
%� 
&  

��
����

･
��
��
 
�
��
�……（答）

以上で４�の解説は終わるが、これをどのように3\WKRQで分析しようか、いろいろ考えたが、����の確

率が�
�
����

�という結論を実際にサイコロを振ってやってみたらどうなるのだろうか。ほんとうに����

回に�回の割合で+2..$,'2になるのだろうか。

　それを3\WKRQ�のUDQGRP関数を使って調べてみたのが次のプログラムである。



�������������������KRNNDLGRB��B��B12�����������������

LPSRUW�UDQGRP

LPSRUW�QXPS\�DV�QS

LPSRUW�PDWSORWOLE�S\SORW�DV�SOW

座標平面（�[\�平面）の設定

[軸ラベルの設定：フォントサイズ���

\軸ラベルの設定：フォントサイズ���

[軸の範囲の設定�：[� �� �から�[� �� �まで

\軸の範囲の設定�：\� �� �から�\� �� �まで

グリッド（格子）の表示

軸の色の設定

�UDQGRP関数のシード値��は特に意味はない。

UROOBGLFHBQ� �����は�����回シャッフルする

という意味

WRWDOBQ ��は��回ごとに平均を取る、という意

味

ORRSBQ ���は��回ごとの取得を���回繰り返す

という意味。

GHI�GHVFDUWHV�D[��UDQB[��UDQB\��D[BWLWOH�[BODEHO� ��[���\BODEHO� ��\���

����D[�VHWB[ODEHO�[BODEHO��IRQWVL]H� ����

����D[�VHWB\ODEHO�\BODEHO��IRQWVL]H� ����

����D[�VHWB[OLP�UDQB[>�@��UDQB[>�@�

����D[�VHWB\OLP�UDQB\>�@��UDQB\>�@�

����D[�VHWBWLWOH�D[BWLWOH��IRQWVL]H� ����

����D[�JULG��

����D[�D[KOLQH����FRORU� ��EODFN��

����D[�D[YOLQH����FRORU� ��EODFN��

ILJ� �SOW�ILJXUH�ILJVL]H� ��������

D[� �ILJ�DGGBVXESORW�����

UDQGRP�VHHG����

UROOBGLFHBQ� ������

WRWDOBQ� ���

ORRSBQ ���

WLWOH�� ��+RNNDLGR�8QLYHUVLW\������0DWK�TX���

GHVFDUWHV�D[��>����ORRSBQ@��>��������@�WLWOH��

UROOBGLFH� �>
$
�
'
�
+
�
,
�
.
�
.
�
2
�
2
@

LQYHVWBSWQ >
+
�
2
�
.
�
.
�
$
�
,
�
'
�
2
@

)ODJ� )DOVH

\�[[�\\ >@�>@�>@

IRU�OO�LQ�UDQJH�ORRSBQ��

����IRU�N�LQ�UDQJH�WRWDOBQ��

��������IRU�L�LQ�UDQJH���UROOBGLFHBQ��

UDQGRP�VKXIIOHはリストUROOBGLFHをランダムにシ

ャッフルする。

シャッフルされたUROOBGLFHが+2..$,'2と一致す

るかどうかを調べる。

QS�UROO�LQYHVWBSWQ�M�はMだけ回転させる。

一致したならば、シャッフルした回数をリスト\�に追

加する。

これを��回繰り返したら、そのシャッフルした回数L�

の平均値（PHDQ関数）をリスト\\�に追加する。

これらを���回繰り返したら、リスト\\の最後１０個

を出力し、そのグラフを描画する。

������������UDQGRP�VKXIIOH�UROOBGLFH�

������������IRU�M�LQ�UDQJH����

����������������[ QS�UROO�LQYHVWBSWQ�M�

����������������LI�UROOBGLFH�  �[�WROLVW���

��������������������)ODJ� 7UXH

��������������������EUHDN

������������LI�)ODJ��  �7UXH�

����������������\�DSSHQG�L�

����������������)ODJ� )DOVH

����������������EUHDN

����\\�DSSHQG�QS�PHDQ�\��

����)ODJ� )DOVH



SULQW��最後１０個の収束値は��\\>���@�

[[� �QS�DUDQJH�OHQ�\\��

E� �>����@
OHQ�\\�

D[�SORW�[[��\\���FRORU� ��EOXH��

D[�SORW�[[��E����FRORU� �UHG��

SOW�VKRZ��

���������������������S\WKRQ�SURJUDP����������������

［出力］

最後１０個の収束値は�>��������������������　��������������������

　　　　　　　　　��　��������������������������������������������

　　　　　　　　　　����������������������������������������������

　　　　　　　　　　�����������������������������������������������

�������������������������������������������������������������������������������@

　上の出力結果は、ここに添付するときに見やすくすために多少加工をしているが、データ自体は弄

ってはいない。この数字だけを見てみると、手計算で求めた�3� 
$  
�

����
�、つまり、ランダムにボー

ルを投げたら、����回に１回ぐらいは

��������+2..$,'2、2..$,'2+、..$,'2+2、.$,'2+2.、

��������$,'2+2..、,'2+2..$、'2+2..$,、2+2..$,'

になる、ということであるが、コンピュータが普及していなかった時代、それを検証することは、と

てつもない時間と労力がいる。それをしたとしても、特に驚く結果にはならないのは予想できる。も

し理論値と実験値が違っていた場合は実験値の回数が少なすぎるのが原因である、と結論づけて、も

しかして理論値が違うのではないか、とは決して疑わないだろう。これが、確率はあやふやなもの、

実証できない物事は科学的ではない、と最初は批判されたのではないか、と予想される。それではグ

ラフを表示する。



　驚くほど綺麗なグラフである。最初に実行してこのグラフが表示されたとき、感動した。

　ついでに、プログラムは省略するが、１個のサイコロを振って１の目が出る確率のグラフも掲載す

る。

　まさに収束値が６になっている。要するに、サイコロを投げて、６回中１回は１の目が出る、とい

うことである。しかし、途中のデータを見てみると、１０回以上１の目が全く出ていない、という箇

所もあり、逆に５回以上１の目が連続している、という箇所もある。しかし、１万回サイコロを投げ

てみると、その平均として６回中１回だけ１の目が出ている、という結論は真実であった。

　高校生の時、確か物理の教科書だったと思うが、電子線を小さい穴に照射すると、それが綺麗な円

になって穴の向こう側にあるフィルムに焼き付けられている画像を見た記憶がある。電子の波動性な

るものは理解出来ていなかったが、少なくともひとつひとつの電子の行き先はランダムのはずなのに、

まるで誰かがコントロールしているような円になっている。このとき、私は、自然界には神のような

存在があるのだな、と変に感心した記憶がある。　以上で４�の解説は終わる。



����　複素数平面の問題である。ここで複素数平面に関する教科書の内容を掲示する。

�����������������������数学Ⅲ（数研出版）�������������

　方程式の表す図形

　複素数平面上の円や直線を，複素数�]�の方程式で表してみよう。

[�

�\

�2

]

D

U

　�U�は正の実数とする。点�D�を中心とする

半径�U�の円は，次の方程式を満たす点�]�全

体である。

　　　　　　　 ]�D  U

[�

�\

�2

3 � 
]

$ � 
D

% � 
E

　��点�$ � 
D ，% � 
E �を結ぶ線分�$%�の垂直

二等分線上の点を�3 � 
] �とする。このとき

　　　　　　　$3 %3

であるから，方程式

　　　　　　 ]�D  ]�E

を満たす点�]�全体は，線分�$%�の垂直二等

分線である。

�����������������ここまで「数学Ⅲ（数研出版）」からの引用��������

　�まず問題文の]] �……①�は�]] �] �なので� ]  �……①� �となり、これは中心が原点半径２の

円である。次に� ]  ]�(� �L ……②は原点�2�と点�$�(� 
�L �を結ぶ線分�2$�の垂直二等分線で

ある。これを複素数平面上の描きなさい、という問題であるが、そのまま複素数平面上に描いて良い



のか、それとも�] [�\L �と置いて慣れ親しんだ�[\�平面として描くか迷うが、どちらでも正解だと

思うので、そのまま複素数平面上に描くことにした。

$�(� 
�L �

��L���L�

�L�

����

①

②

[�

�\

�2 [�

�\

�2

���　①と②のグラフを一つの複素数平面上に図示すると

��L�

�L�

����

①

[�

�\

�2

　ここで�] [�\L �とおくと

　��
 ��[ �\ ����……③

 \ �(� [ �……④
�

　④を③に代入してまとめる。

　�� �[ ��(� [ ��

　�[�[ 
�(�  ��

　�[ ����(� �

　�[ ��のとき�\ ���

　�[ (� �のとき�\ ��

　よって　求める解は�] ��L�����(� �L �……（答）

���　�[ ��L�(� 
�L  ���(� L ��FRV� ��
S

� ��LVLQ� ��
S

�
�となるので

Q[  Q�
Q

� ��FRV� ��
S

�
LVLQ� ��

S

�
 Q� �FRV� ��

QS

� ��LVLQ� ��
QS

�
�

これが負の実数になる必要十分条件は

�VLQ  � ��
QS

�
�……⑤�かつ�FRV� ��

QS

�
��……⑥�となる整数�Q�である。

⑤より

　��
QS
�
 �NS�（�N�は整数）となるので、�Q �N……⑤�

⑥より

　�
��O �
�

S�
QS
�
�

��O �
�

S（�O�は整数）となるので�　��O����Q���O��

　　辺々を��で割ると　�O�
�
�
�Q��O�

�
�
����Q�は整数なので�Q �O��……⑥��

　以上より　⑤�と⑥�を同時に満たすのは⑤�は⑥�に含まれるので

�　 Q[ �が負の実数になる必要十分条件は、�Q �O��　ただし、�O�は整数……（答）



　以上で５�の解説は終わるが、次に3\WKRQ�を使って分析する。いろいろ考えたが、まず3\WKRQ�で

複素数を扱うことが出来る、ということを示し、�円� ]  ��を複素数平面上に描画するプログラムを作

ることにした。しかし、�[\�平面のときも円� �[ � �\  ��をコンピュータで描画するとき、媒介変数K

を使って、�[ �FRVK �、�\ �VLQK �として円を描くが、複素数平面も同じで� ]  ��のままでは描け

ない。�] ��FRVK 
�LVLQK �として円を描く。また、3\WKRQ�では虚数単位�L�は��M�となるので注意が

必要である。

�������������������KRNNDLGRB��B��B12�����������������

LPSRUW�QXPS\�DV�QS

LPSRUW�PDWSORWOLE�S\SORW�DV�SOW

GHI�GHVFDUWHV�D[��UDQB[��UDQB\��D[BWLWOH�[BODEHO� ��[���\BODEHO� ��\���

座標平面（�[\�平面）の設定

[軸ラベルの設定：フォントサイズ���

\軸ラベルの設定：フォントサイズ���

[軸の範囲の設定�：[� �� �から�[� �� �まで

\軸の範囲の設定�：\� �� �から�\� �� �まで

グリッド（格子）の表示

軸の色の設定

����D[�VHWB[ODEHO�[BODEHO��IRQWVL]H� ����

����D[�VHWB\ODEHO�\BODEHO��IRQWVL]H� ����

����D[�VHWB[OLP�UDQB[>�@��UDQB[>�@�

����D[�VHWB\OLP�UDQB\>�@��UDQB\>�@�

����D[�VHWBWLWOH�D[BWLWOH��IRQWVL]H� ����

����D[�JULG��

����D[�D[KOLQH����FRORU� ��EODFN��

����D[�D[YOLQH����FRORU� ��EODFN��

ILJ� �SOW�ILJXUH�ILJVL]H� ��������

D[� �ILJ�DGGBVXESORW�����

WLWOH�� ��+RNNDLGR�8QLYHUVLW\������0DWK�TX���

[BODEHO� ��UHDO�

\BODEHO� ��LPDJLQDU\�

GHVFDUWHV�D[��>����@��>�����@�WLWOH��[BODEHO�\BODEHO�

] ��FRVK 
�LVLQK �
W QS�OLQVSDFH����
QS�SL������

] �
�QS�FRV�W���M
QS�VLQ�W��

D[�SORW�QS�UHDO�]���QS�LPDJ�]����FRORU� ��EOXH��

SOW�VKRZ��

���������������������S\WKRQ�SURJUDP����������������

［出力］

　　　　　　　　　　　　　　　　　　　　何の変哲もない円であるが、一応複素数平面に描いた円

　　　　　　　　　　　　　　　　　　　である。横軸は実軸で縦軸は虚軸である。

　　　　　　　　　　　　　　　　　　　　このように3\WKRQは複素数を扱うことができる。

　　　　　　　　　　　　　　　　　　　　����年の北海道大学の入試問題を振り返ってみると、数

　　　　　　　　　　　　　　　　　　　学Ⅲの内容は、複素数平面だけに絞っていたように思う。

　　　　　　　　　　　　　　　　　　　多分これはコロナ禍の影響で、数学Ⅲの後半部分（ほとん

　　　　　　　　　　　　　　　　　　　どの教科書は前半が複素数平面、後半に微分�積分をもって

　　　　　　　　　　　　　　　　　　　きている）を出題しなかったのではないのかな、と考えて

　　　　　　　　　　　　　　　　　　　いるが、果たしてどうだろうか。

　　　　　　　　　　　　　　　　　　　以上で北海道大学の入試解説を終わる。


