
２０２０年度　東京大学　数学（理）
(;&(//1(7な高校生のための入試問題解説

　東京大学の入試問題を実際にその場で解くことを想定

して解説する。通常の解説本と何が違うかと言えば、解

法を見つけ出すまで、かなりの試行錯誤を繰り返すと思

うが、その解答に至るまでの思考の過程を中心に解説し

ている。さらに、3\WKRQシリーズとしての本なので、

プログラムが出来る箇所はプログラミングを試みる。

　難関大学の入試問題を解くとき、現役時代ならまるで

神の啓示でもあったかのように解き方が見えてきたが、

年齢を重ねるにつれてそのようなことはなくなってしま

った。さらに６題を続けて考えきる知力�体力もなくなっ

た。有名な解説本は、そのような啓示と知力�体力を持っ

ている人が書いていると思われる。しかし、この解法は

その場で思い付かないよな、というものも多く見受けら

れる。寧ろ、定年退職した著者の解説本の方が分かりや

すいのではないか、と自画自賛しながら書いている。

　３つの不等式を見てまず思うことは、�次不等式であり、D、E、F�を入れ代えた式が３

つ並んでいる、ということである。ここで、 �D[ �E[�F!��を満たす実数[�とは、２次

不等式の解のことであり、頭によぎるのは、数学Ⅰの教科書にある�次不等式の解法であ

る。ここで、「数学Ⅰ（数研出版）」の教科書を引用する。
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　上の表は�D!��のときだけであるが、D���のときは、上の表の� �D[ �E[�F���の解

と同じになる。要するに�[!S�の形になることはありえない。でも、問題文には、３つの

不等式を全て満たす実数[�は�[!S�となる、と書いてある。何が違うんだろうか、とここ

で悩んでしまう。ここで諦めずに、最後まで問題文を読んでみる。すると、����に「D、E、

F�のうち少なくとも１個は０である。」という文言を見て、はたと気づく。そうか、 �D[

�E[�F!��が�次不等式とは書いていない、単に不等式と書いているだけか、というこ

とに。つまり、D ��のときは１次不等式となり、�次不等式�E[�F!��の解は、E!��な

らば[!�
F

E
となり、確かに�[!S�の形に成りえる。後は、これをどのように証明するの

か、ということである。この問題は、論理的、数学的に説明する能力を見ているのだろう、

と判断して、答案を作成していく。

（１）は上のことに気づけば、それほど難しくないが、成り立つことを減点なく証明しな

ければならない、というプレッシャーは感じるだろう。このときの受験生へのアドバイス

としては、完璧を目指したら手が縮こまるので、多少の減点はあったとしても、論理的な

飛躍や明らかな間違えがなければ大丈夫、と開き直った方がいいと思う。

　この手の証明法として、命題の条件（仮定）を式変形して結論を導く方法と命題の対偶

を証明する方法、または背理法を使って証明する方法の３つが考えられる。では、この問

題は何を使って証明するか。問題文は�S(T�という綺麗な命題の形にはなってはいない。



このことから、背理法（結論を否定して矛盾を出す）を用いて証明するように要求してい

る匂いを感じる。

　D���とする。 �D[ �E[�F!�の解は、\ �D[ �E[�F�かつ\!��となる[�の範囲なの

である。\ �D[ �E[�F�と[�軸との関係は下図の３通りしかなく、\!��となる[�の範囲

は下の３通りしかない。
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　このことから、少なくとも一つの不等式が上の３通りの�つにしかならないので、３つ

の不等式を全て満たす実数[�が�[!S�になることはない。�E��、�F���のときも同様に示

せるので、�以上より、「D、E、F�の少なくとも１つが０より小さい」とすると「�３つの

不等式をすべて満たす実数[�は[!S�になる」ことに矛盾する。

よって、D、E、F�は全て０以上である。

（２）も（１）と同様にして、背理法で証明してみよう。

　D、E、F��全てが０でない実数とする。すると３つの不等式は�次不等式になる。

さらに、（１）からD、E、F�は正の実数になる。これより、（１）と同様にして、

１つ目の不等式を\ �D[ �E[�F�かつ\!��とし、これを満たす実数[�を下図を用いて考
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　このことから、D、E、F��全てが０でない実数とすると、３つの不等式を同時に満たす�

　実数[�が[!S�になることに矛盾する。

　よって、D、E、F�の少なくとも�個は０である。

（３）（１）と（２）から（ⅰ）D �、E!�、F!�　と（ⅱ）D �、E �、F!�と

（ⅲ）D �、E �、F ��の３つの場合のときに、[!��となることを示せば、[!Sとな

るS�は�S ��となることが証明される。これは、D、E、F�を入れ換えることによって、全

て同じ証明になるので、上の��ⅰ�、�ⅱ�、�ⅲ�を示すだけでよい。



　　（ⅰ）D �、E!�、F!�のとき、
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　以上が第１問の解説であるが、この問題の趣旨は、数学的な表現力を試しているような

問題である。マークシート方式のセンター試験の批判として、マークシートだと表現力を

みることが出来なく、問題を解ければよい、という風潮になるのでは、と昔から言われて

いるが、それをカバーするのが�次試験（個別試験）である、ということを示しているよ

うな問題である。

　この問題を一生懸命考えた先生には失礼な言い方だと思うが、数学的な面白さからはほ

ど遠い問題で、これが出来たからって、どうってことがないような問題のような気がする。

敢えて言うならば、ボーっと教科書を読んでいては駄目だよ、と(;&(//1(7な生徒に

説明するときに使える問題である。つまり、東大でこんな問題も出されているよ、と１年

生のときに言えるメリットがある。数学では、いかに答案を書くか、というのが昔から言

っていた内容である。その為には、論理的に物事を考え表現する、というのが基本として

指導してきたが、文系では�次試験に数学がないところが多いので、いかに問題を解くか、

に集中していたのは事実である。しかし、問題を解く能力と論理的な思考力とは相反する

ものではない。答えを導きだせる(;&(//(17な生徒は、自然と論理的な思考力も身に

ついている。つまり、思考力なくして難関大学の数学は解けない、ということである。



　この問題は、どの分野の問題なのか、を考えるのに時間がかかるのでは、と思う。ベク

トルで解くのか、媒介変数を使った軌跡の問題として解くのか、かなり迷ってしまう。

ベクトルで解くのでは、と考えた人は、「数学%」の教科書のベクトル方程式の次の記述

を思い浮かべた人だろう。
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を満たしながら動くとき，点�3�の存在範囲を求めてみよう。
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　よって，N2$ 2$�，N2% 2%��を満たす点�$�，% ��をとると，定数�N�

　に対して，点�3�の存在範囲は辺�$%�に平行な線分�$�% ��である。

　N�の値が���N���の範囲で変化すると，線分�$ �%��上の点は，点�2�を

　除く�△2$%�の周およびその内部を動く。

>�@　  N ��のとき，V �，W ��であるから，点�3�は点�2�に一致する。

　したがって，点�3�の存在範囲は，△2$%�の周および内部である。
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　しかし、このようなベクトル方程式ではなく、図

形の問題として、まずは解いてみよう、考えてみる。

　△$%;�△%&;�△&$;�が△$%&�△%&;��

となることが分かる。そこから、△%&;�が△$%&

の半分ならば面積の和は２となり、△$%&と等しい

ならば、面積の和が３になるんだ、と気付く。すると、まずは下のような斜線部分の範囲
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が面積の和が２以上３以下である、と見つける。
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　次は、上の斜線部分の隙間の部分がどうなるのだろうか、を考えてみる。斜線から左右

にはみ出したら面積が２より小さくなったり、３より大きくなったりするのはありえない

な、ということで次のような図を考える。
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　同様にして、点;�が上図の辺'(�上にある場合は、

　　　　　△$%;�△%&;�△&$; ��△$%&���△$%& ��△$%& �

A

B

C

　以上より、先の斜線部分以外で

　��△$%;�△%&;�△&$;���となる点;�の存在範囲

　は右図の斜線部分となる。
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　以上より、��△$%;�△%&;�△&$;��となる点;�の存在範囲は下図の斜線部分
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　この解法は途中の証明をかなり端折っている。底辺の長さが同じ三角形の面積比は高さ

の比になる、というだけであるが、果たして細かな証明が必要かどうかは分からない。



　この問題を読んで最初に思うことは、数学Ⅲの分野で、そのまま解いていけば答えが出

そうな気になるが、このタイプとしては、最後の（３）が解けるかどうかが、他の受験生

との差を付けれるかどうか、なのではないか、というのが経験上感じられる。とにかく、

まずは普通通り（１）と（２）を解いてみる。
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　これより、I� 
W �の増減表は下記の通りになる。
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　この増減表から、���W���におけるI� 
W �の最大値は、W 
�
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※�この「増減を調べよ」という問題が入試問題にたまにあるが、生徒からの質問として、

増減表を示すだけでは駄目ですか、とよくされる。(;&(//(17な生徒ほど、増減表と

書き出した答えは同じじゃないかな、ということからなのだろう。私は、多分、いいんじ

ゃないかね、と答えるが、大学側の採点基準として、本当にどうなっているかは分からな

い。予想として……大学によって違うんじゃないかな、(;&(//(17な高校生が多く受

験する大学は2.で、そうじゃないところは減点されるのかな……と思ったりしているが、

実際のところどうなのか定かではない。

（３）

　（１）と（２）は、特に迷うべき箇所もなくすんなりと解答が導き出された。その後の

（３）なので、かなりの難問なのでは、と予想するが、まずは問題文どおり図を描いてみ

る。まず迷うのは、（２）でのI� 
W �のグラフではないな、ということである。I� 
W �は点3

と原点との距離なので、W 
�
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のとき原点との距離が最大になっている、ということであ

る。それでは、まず概形図を描くために、具体的な点を求めて結んでみる。
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W ��のとき、[� 
�  �(� 、\� 
�  �から点� 
�(� ����� が最後の点となる。

それらの点を取って概形図を考えると、原点を通り上に凸の�次関数と似たような図形に

なる。もしこの問題が難関大学でなければ、単に[�軸と囲まれた部分の面積を求めさせて



終わりと思うが、さすが東大、それじゃ駄目で、それを時計回りに����回転させ、通過し

図１

た面積をもとめさせようとする。まず3の軌

跡&を図示するが、せっかくなので3\WKRQ�

を使って表示すると図１になった。これを

時計回りに����回転させた図を考えなければ

ならないが、そのときに（２）で求めた

原点から一番遠い点がW 
�

�
のときであり、

その長さが
�(�
�
であることを考慮しながら

描いてみる。
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すると、図２のようになる。ここで、この

通過した領域の面積は、先の図の[�軸で囲

まれた面積と半径
�(�
�
の四分円の面積を

合計した面積である、と気付くかどうかが

完答できるかどうかの分かれ目であろう。

まず、図１の[�軸で囲まれた面積を �6 �とし

て求めてみる。
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　ここで、'��
�

W( �� �W GW�を�� �W  X�とおいて求めようかな、と思ってメモ用紙にざっ

と計算したら０となった。そこで、\ W( �� �W �は奇関数であり、'�D

D

 � 
奇関数 G[ �、

'�D

D

 � 
偶関数 G[ �' �
D

� 
偶関数 G[�という公式が使えるということに気付いた。(&(//(1

7�な高校生ならばすぐに気付くのだろうが……、歳のせいということで……、ここで若

者ならば（汗）という言葉が入るのだろうが……、話しを元に戻すことにする。



この積分を\ ( �� �[ が半円�にな

るので、円の面積を使って求める方

法もあるが……私はこっちの置換積

分が好きである。

　 �6  �' �
�

( �� �W GW�となり、W VLQ�とおくと、

　　

W ��� ���

� ������ ��
�

�
���
　　　

GW

G�
 FRV�

　 �6  �' �
�
�

( �� �VLQ � FRV�G� �' �
�
�

�FRV �G� �' �
�
�

�FRV �G� �' �
�
� �� FRV��

�
G�

　　 �
�

�
�

� ��
�

�

�

�
VLQ��  ��

�

�
 
��

�

　これに半径
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の四分円の面積���
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�（答）　※ここで図１の3\WKRQのプログラムを以下に示す。
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（１）�まずは問題文を読んで、次のようなものを考えた。

　　　�������� �� ･ �� � �� ･ �� � �� ･ �� �……� �� ･ �Q ��

　　　����� �� ･ �� � �� ･ �� � �� ･ �� �……� �� ･ �Q ��

　　　����� �� ･ �� � �� ･ �� � �� ･ �� �……� �� ･ �Q ��

　　　　　�����　　　　　　�　　

　　　����� �Q �� ･ �� � �Q �� ･ �� � �Q �� ･ �� �……� �Q �� ･ �Q ��

　しかし、具体的にQ ��のときは次のようになる。

　　　　　　　　 �� ･ �� � �� ･ �� � �� ･ �� � �� ･ ��

　　　　　　　� �� ･ �� � �� ･ �� � �� ･ �� � �� ･ ��

　　　　　　　� �� ･ �� � �� ･ �� � �� ･ �� � �� ･ ��

　　　　　　　� �� ･ �� � �� ･ �� � �� ･ �� � �� ･ ��

　これを見ると、 �� ･ �� 、 �� ･ �� 、 �� ･ �� 、 �� ･ �� �は条件に適さず、さらに、 �� ･ �� と �� ･ �� な

どは同じものである。つまり、 N� ･ N� �のタイプを消し、さらに、その和の半分が求める答

えになるだろう。このようなことを考えて、以下のような答案になった。
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（２） QI � 
[  �� Q��D [� Q��D �[ �……� Q�QD Q[ より

　　　 �Q �I � 
[  �� �Q ���D [� �Q ���D �[ �……� �Q ��QD Q[ � ��Q ��Q �D �Q �[ �となる。

　この式をじっと見て、問題を解く手掛かりは、 Q�ND と �Q ��ND �との関係かな、と予想する。

まず、 Q��D と �Q ���D �の関係を考えると、

　　　　　　 �Q ���D  �� � �� � �� �……� �Q �� � Q�  Q��D � Q�

次に、 Q��D と �Q ���D �の関係を考える。このとき（１）を使うのでは、と寄り道をしてしま

い、結局、上と同じように考えればよい、と気付くのに多少時間を費やした。

　　　　　　 �Q ���D  Q��D � Q� �
�� � �� � �� �…… 
� �Q ��  Q��D � Q� Q��D

同様にして、 �Q ���D  Q��D � Q� Q��D 、 �Q ���D  Q��D � Q� Q��D 、……、 �Q ��QD  Q�QD � Q� �Q�Q �D

最後に ��Q ��Q �D �を考えるが、 �Q�Q �D �は定義からあり得ないな、と気付き、もともとの定義

から、 ��Q ��Q �D  �� ･ �� ･ �� ･……･ Q�  Q� Q�QD �と至ってシンプルになることを導く。

これらの関係を �Q �I � 
[に代入すると、

�Q �I � 
[  ��� Q��D 
� Q� [�� Q��D 
� Q� Q��D �[ �……�� Q��QD 
� Q� �Q�Q �D Q[ � Q� Q�QD �Q �[

������������� �� Q��D [� Q��D �[ �……� Q�QD Q[ � Q� [��� Q��D [� Q��D �[ �…… 
� Q�QD Q[ �

������������� QI � 
[ �
Q� Q[I � 
[

�������������� QI � 
[ �� 
� Q� [

　　　　よって、
�Q �I � 
[

QI � 
[
 �� Q� [

次に、
�Q �I � 
[

QI � 
�[
を考えるが、上の関係を使う、と気付くのに時間が掛かると思う。

これが、（２）で
�Q �I � 
[

QI � 
[
を求めさせ、（３）で

�Q �I � 
[

QI � 
�[
�を求めよならば、入試の定番と

して（２）
�Q �I � 
[

QI � 
[
の関係を使うのだろう、と考えるが、このように並列に並んでいると、

同じことをして求められるのでは、と考えてしまい、時間が無駄に経ってしまう。そこを

乗り越え、次のような解法を思い付いた。



�Q �I � 
[

QI � 
[
･

QI � 
[

�Q �I � 
[
･

�Q �I � 
[

�Q �I � 
[
･……･

�I � 
[

�I � 
[
 �� 
� Q� [ �� 
� �Q �� [ �� 
� �Q �� […�� 
��[

ここで� �I � 
[  �� ���D [ ��[�なので

�Q �I � 
[  �� 
� Q� [ �� 
� �Q �� [ �� 
� �Q �� […�� 
��[ �� 
�[

これより QI � 
[ �� �� 
� �Q �� [ �� 
� �Q �� [ �� 
� �Q �� […�� 
��[ �� 
�[ �より

　　　　 QI � 
�[  ���
�Q �� 
･�[ ���

�Q �� 
･�[ ���
�Q �� 
･�[…���� 
･�[ �� 
��[

　　　　　　��� �� 
� Q� [ �� 
� �Q �� [ �� 
� �Q �� […�� 
� �� [ �� 
��[

以上より
�Q �I � 
[

QI � 
�[
 � 
�� Q� [ � 
�� �Q �� [ � 
�� �Q �� [ �…��� 
�� �[ � 
�� [

� 
�� Q� [ � 
�� �Q �� [ � 
�� �Q �� […� 
�� �� [ � 
�� �[
 ��[

（３）これは（２）の答えを使うのだろう、と予測して解法を考えるのが常道であろう。

まず、
�Q �I � 
[

QI � 
[
 �� Q� [�から、 �Q �I � 
[  QI � 
[ �� 
� Q� [ �となり、この式から、 ��Q ��N �D �と

Q�ND �との関係をどのように求めるのか考える。この式は、[�についての恒等式、というこ

とに気付けば、係数比較をするのだろう、という発想にたどり着くと思う。

��Q ��N �D �は� �Q �I � 
[ �の�
�N �[ の係数で、 Q�ND �は QI � 
[の

N[ �の係数である、ということに着目

して、左右の� �N �[ �における係数を比較をすると、 ��Q ��N �D  �Q�N �D � Q�ND ･ Q� ……①

次に、
�Q �I � 
[

QI � 
�[
 ��[�から、 �Q �I � 
[  QI � 
�[ �� 
�[ となり、上と同様にして

��Q ��N �D  �N �� �Q�N �D � N� Q�ND ……②となる。この�式から、 �Q�N �D �を削除すると、

①から� �Q�N �D  ��Q ��N �D � Q� Q�ND �となり、これを②に代入すると

　　　　　　　　　　 ��Q ��N �D  �N �� � ��Q ��N �D 
� Q� Q�ND � N� Q�ND

　　　　　　　　　　�
�N �� 
�� ��Q ��N �D  Q� ･ �N �� Q�ND � N� Q�ND

　　　　　　　　　　�
�N �� 
�� ��Q ��N �D  N� Q�ND �

�Q �� 
��

　　　　　　　　　　よって、
��Q ��N �D

Q�ND
 

N� � 
��Q �� �

��N �� �

※第４問は、初めて問題を読んだときは、 NQ& �個などの表記があり、この問題を解くため

には二項定理か何かを使わせるような匂いを漂わせているが、実際の解法では、二項定理

は一切使わない。それでは、この問題は何を求めようとしているのか、を考えなければ解

くこともできない。それで、具体的な数値を使って問題の全体のイメージを掴もうとする

かどうかがこの問題を解くコツである。これをすることによって、この問題は何を求めよ

うとしているのかが分かり、とにかく答えが出せるかどうかを解いている問題だと理解す

る。答えが出せたら、途中の解法に多少の説明不足があったとしても、かなりの高得点が

得られると思う。先にも述べたが、具体的な採点基準は分からないので、どのように減点

されるのかも定かではない。しかし、私がもし採点する立場なら、答えが出てなんぼ、の

問題で、単純ミスで答えが違っていた場合だけ部分点での得点があるのかな、と思う。



（１）これは何を訊きたい問題なのか、皆目見当も付かない。

　まず、問題を読みながら図を描いてみるが　　　　　　　　
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　上図の斜線部分になるのはすぐに分かるが、それを証明させたい問題なのだろう。では、

斜円柱の切り口が円になることを示せばよいのだろうか。それならば、縦に切った切り口

の三角形を使って、円になることはある程度の証明はできるが、本当にそれでいいのだろ

うか。もっと高級なものを使って証明しなければならないのではないか、と悩んでしまう。

悩んでいるうちに時間が経ってしまうので、ここではカッコよくベクトル方程式を使って

みる。

点3が6の底面上を動くので、3� 
�V���W����� 、 �V � �W ���とおける。さらに、$� 
����������� 、　

線分$3�上で] ��となる点を4� 
�[���\����� �とおくと、$4 N$3、��N��

　�[���\� 
��  N�V���W� 
�� より"
 �[ � N� 
�V � ……①

 \ NW����������������……②

 �� ��N��������……③

　③を①と②に代入すると、V �[、W �\　これより平面] ��における7の切り口の方



程式は�� �[ �� �\ ���すなわち� �[ � �\ �
�

�
�これは中心原点、半径

�

�
�の円を表す。

これを示した後に、円錐6の切り口も円になることの証明もいるのだろうか。さすがに、

それはいらないと判断した。

（２）（１）から判断すると、] N�における切り口の面積関数をN�で表し、それを�から

�まで積分して求めるのだろう、と予想する。それでは、] N�における切り口の面積は

どうなるか、を集中して考えてみる。
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これから　] N�のとき

　上の右図から、切り口の半径U��は�� 
�N �U ����なので、U 
�� N

�

また、左図より長方形の横の長さは��U ��
�� N
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これより、切り口の面積関数6� 
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　※第５問は、数学Ⅲ、どっぷりど真ん中、直球勝負の問題であった。



（１）まず最初にやってみることは、\ $VLQ��と\ VLQ � 
�� � �のグラフを描いてみ

ることだろう。ここでは、3\WKRQ

を使って、$ ���、� ����として

グラフを描いたのが右図である。

これは手書きでも十分描ける図と

思うので、これから交点は少なく

とも４個はあると考えられる。

それでは、それをどのように証明

しようか、と考えるが、

I� 
�  $VLQ���VLQ � 
�� � �とし

て、I� 
� !�、I� 
� ���ならば、

��と��の間に少なくとも１個の実

数解を持つ、ということを利用しようと思うが、どのような値を代入してよいかが問題と

なる。このとき、I� 
�  I� 
��  �VLQ� �であることに着目し、その場合分けを考える。

�ⅰ��VLQ !� ��のとき

　I� 
�  �VLQ �� �、I� �
�

�
 $�VLQ !� ��

�

�
� � ���$ �!����VLQ �� ��

�

�
� �



I� �
��

�
 �$�VLQ �� ��

��

�
� �、I� �

��

�
 $�VLQ !� ��

��

�
� �

I� �
��

�
 �$�VLQ �� ��

��

�
� � �から、����

�

�
、

�

�
���

��

�
、
��

�
���

��

�
、

��

�
���

��

�
のそれぞれの間に少なくとも１個の解が存在するので、�������の間に少

なくとも４個の解が存在する。

�ⅱ��VLQ �� ��のとき

I� �
�

�
 $�VLQ !� ��

�

�
� �、I� �

��

�
 �$�VLQ �� ��

��

�
� �、

I� �
��

�
 $�VLQ !� ��

��

�
� �、I� �

��

�
 �$�VLQ �� ��

��

�
� �

さらにI� 
��  �VLQ !� �から、
�

�
���

��

�
、
��

�
���

��

�
、
��

�
���

��

�

��

�
������のそれぞれの間に少なくとも１個の解が存在するので、�������の間に少

なくとも４個の解が存在する。

以上より、方程式は��������の間に少なくとも４個の解が存在する。

（２）この問題は、問題文を読み解くことが難しい。わざと読み取れないように書いてい

る、としか思えない。最初、楕円上の点と楕円内部の点を結ぶ直線は無限に存在するのだ

から、接線に垂直な直線も４本なんてものじゃなく、無数に存在するんじゃないかな、と

思ってしまう。でも、よくよく読んでみると、'内にある任意の点3と楕円&上にある点

4を結んで作られる直線34と点4における接線が垂直になるのは、確かに限られるだろ

う、と気付く。そのような点4が、少なくとも４個存在する、という意味なんだ、と理解

するまでに時間が掛かってしまった。

では、どのように証明しようか、と悩んでしまうが、これも（１）を使うんだ、というこ

とで、楕円上の点をVLQ�とFRV�の媒介変数を使って表すことを考える。

まず、� �[ � �\ � �U �を表す領域'内の点3� �
U �

(�
FRV� ���U �VLQ� 、但し�U ��U�とおく。

さらに、楕円&上の点4� 
(� FRV� ���VLQ� �とおくと、
�[

�
� �\  �の両辺を[�で微分すると

G\

G[
 �

[

�\
なので、点4における接線の傾きは� (� FRV�

�VLQ�
 �

FRV�

(� VLQ�
となる。

次に、直線34の傾きは
�VLQ� U �VLQ�

�(� FRV�
U �

(�
FRV�

 (� � 
�VLQ� U �VLQ�

��FRV� U �FRV�
なので、

これらが垂直になるには、�
FRV�

(� VLQ�
･

(� � 
�VLQ� U �VLQ�

��FRV� U �FRV�
 ��
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･ � 
�VLQ� U �VLQ�

��FRV� U �FRV�
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　　　　　　　　　　　　VLQ�FRV��U �VLQ�FRV  � ��VLQ�FRV� UVLQ�FRV�



　　　　　　　　　　　　VLQ�FRV��U ��VLQ�FRV� 
�FRV�VLQ�  �

　　　　　　　　　　　　
�

�
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　ここで�
�

�U �
 $、�� � ��とおくと、$VLQ���VLQ  � 
�� � � � �となり、任意の� ��に

対して点4�が少なくとも４個存在するには、①を満たす��が�������の範囲に少なくと

も４個の解を持てばよいので、（１）より$!��とならなければならない。

　ここで���U ��U���なので、$ 
�

�U �
!
�

�U
!
�

�
となり、$!��となるU�は存在する。

　その最大値は
�

�U
 ��となるときなので、U 

�

�
となる。
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※ここで使用したグラフのプログラム（3\WKRQ）を以下に示す。


