
２０２０年度���東北大学　���数学��理�
(;&(//1(7な高校生のための入試問題解説

　東北大学の入試問題を実際にその場で解くことを想定

して解説する。通常の解説本と何が違うのかと言えば、

解法を見つけ出すまで、かなりの試行錯誤を繰り返すと

思うが、その解答に至るまでの思考の過程を中心に解説

している。さらに、3\WKRQシリーズとしての本なので、

プログラムが出来る箇所はプログラミングを試みる。

　難関大学の入試問題を解くとき、現役時代ならまるで

神の啓示でもあったかのように解き方が見えてきたが、

年齢を重ねるにつれてそのようなことはなくなってしま

った。さらに６題を続けて考えきる知力�体力もなくなっ

た。有名な解説本は、そのような啓示と知力�体力を持っ

ている人が書いていると思われる。しかし、その解法は

その場で思い付かないよな、というものも多く見受けら

れる。寧ろ、定年退職した著者の解説本の方が分かりや

すいのではないか、と自画自賛しながら書いている。
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※�この問題は特別なひねりもなく、計算が面倒という点を除けば素直な問題である。



　ここで、ベクトルについて多少語ってみる。今は「数学%」という選択科目の中の一節

として入っているが、(;(&(//(17な高校生達は必修として学んでいることだろう。

つまり大学受験科目において、文系か理系かを問わずにベクトルを出題範囲にしている大

学が多い。では、このベクトルをどのように教えればよいのか。高校で初めて習う手垢の

付いていない内容を教えるのが、教師として一番遣り甲斐がある。逆に言えば、中学校か

らの発展的な内容を教えるときに大変なのは、まず手垢を洗い流さなければならない、と

いうことである。つまり、中学校の狭い範囲での解法のテクニックを変に暗記して、本当

の意味を全く理解していない生徒を教えるのが一番大変である。長年教えてきた感触とし

て、新しい内容を教えるとき、最初にどのようなイメージを持たせるか、というのが大事

である。これを失敗すると、なかなか修正ができない。要するに、ベクトルは導入が全て

である、ということである。定義としては、「ベクトルとは、向きと大きさだけで定まる

量である。」という一言であるが、このイメージがなかなかつかめない。

�������������������「数学%」（数研出版）の抜粋�������
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　したがって，右の図のように，位置は違うが，

向きが同じで大きさが等しい有向線分�$%�と

有向線分�&'�は，ベクトルとしては，同じもの

を表す。
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　ベクトルは上の図のように矢印（有効線分）で表されるが、矢印には位置がある。上下

左右、いろいろな所に書けて、ノートの上の方に書いた矢印と下の方に書いた矢印は、違

うもの、と誰もが思う。しかし、ベクトルになると同じである、と教えられる。矢印が指

し示す方向と長さ（大きさ）が同じなら、同じもの、という概念がすんなりと理解できる

生徒となかなか理解できない生徒に分かれる。経験上、なかなか理解出来ない生徒の方が

将来的に伸びるが、その生徒に対し”腑に落ちる”ような教え方を考えなければならない。

自分自身がベクトルを習ったときに力学的なイメージを持ったので、はじめは、生徒にも

似たようなイメージで教えていたが、ベクトルの始点が作用点としたならば、その場所が

違えば作用点が違うのだから違うものというイメージを払拭することはできない、と感じ

た。

　いろいろ考えて、分かりやすいと思ったのが、

現在の天気予報での解説で使われている図であ

る。風の向きをベクトルで表した図で、今後の

風の向きや強さをこれを使って説明していた。

このイメージが、向きと大きさが同じならば同

じもの、位置には関係ない、というがまさに

「腑に落ちる」ものである。もしも、腑に落た

せないまま先に進んでしまったら、せっかく伸

びる将来も無に帰してしまうだろう。
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���と同様にしてＣとＭが異なる２つの共有点をもつようなD�の値の範囲を求めると、
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�２��の答えと合わせると、下図になる。

　　　　　　　　　　　　　　　　　　　　　　　　　　　　

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

　これらより、集合� �3｜点3は&と/の共有点 �� �3｜点3は&と0の共有点 �の要素の個数
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が３となるのは、次の２通りである。

�ⅰ�２直線の交点が円上にあり、各直線と円との共有点が

　２個あるとき、���と図Ⅰ�より�D ��となる。

�ⅱ��１つの直線が円に接し、他の直線と円との共有点が

����２個あるとき、図Ⅰより�D ���またはD 
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�１��の解法

数学的帰納法で証明する。

［Ⅰ］�Q ��のとき

　　左辺 �� � �� �� ��、右辺 ��  �����よって、左辺�右辺なので、与式は成り立つ

［Ⅱ］�Q N��N 
�� �のとき　 N� � �N ��� N� �が成り立つと仮定する。
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　　　�Q N���のときも成り立つ。

　以上より、数学的帰納法からQ���のすべての自然数Qについて与式は成り立つ。

�２��の解法

�１）よりQ���のとき、 Q� � �Q ��� Q� �なので、 Q� � �Q ��� Q� を満たすのは、少なく

ともQ��の正の整数である。

Q ��のとき、左辺 �� � �� �� ��、右辺 ��  �　これより左辺!右辺なので満たす。

Q ��のとき、左辺 �� � �� �� ��、右辺 ��  �　よって、左辺!右辺なので満たす。

よって、Q �����

�３��の解法

Q���のとき、 Q� � �Q ��� Q� 、さらにDQ�E���なので、、 Q� � �Q �� Q� �DQ�Eと

なる０以上の整数�D、E�および正の整数�Q�は存在しない。
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※ここで数学的帰納法について語ろう。

導入でよく使うのは、ビルの建築と数学的帰納法

は同じなんだよ、と生徒に言って、はぁ～、とい

う顔をさせてから話を進める、という手法である。

高いビルを建てよう、と思ったとき、まず１階部

分の土台を固めて作っていき、次にその１階部分

の上に２階部分を作るが、その作り方を覚えてお

けば、次の３階部分も同じように作れるだろう。

要するに、最初は土台部分である�Q �を証明し、

次にN�階目までが完成されたとして、その上に

N���階目の作り方を示せば、Q�が自然数ならば何階のビルでも建設することができるだ

ろう、と、哲学的な用語も含んでいる「数学的帰納法」にまずは親近感を持たせる。

以上のイメージを持たせながら、例えば次の例題を使ってさらに詳しく説明する。

例題　Q�は���以上の自然数とする。不等式� Q� !�Q���を示せ。

［Ⅰ］�Q ��のとき

土台となる階を作っている箇所
　　左辺 ��  �、右辺 �･��� �

　　左辺!右辺　よって、Q ��のとき成り立つ。

［Ⅱ］�Q N��N 
�� �のとき�

　　　　　 N� !�N��……①�が成り立つと仮定すると、

N�階目のフロアーが完成したとし

て、その上にN���階目のフロア

ーを作ろうとしている箇所

　　　��Q N����N 
�� �のとき

　　　　　①の両辺に��を掛けると

　　　　　 �N �� !���N 
��

　　　　　 �N �� !�N��

　　　　　 �N �� !�N����N

　　　　　 �N �� !��N 
�� ��N!��N 
�� ��

　　　　よって、Q N����N 
�� �のときも成り立つ。

［Ⅰ］［Ⅱ］から、３以上のすべての自然数Q�について与式は成り立つ。

　この最後の口上が大事である。これがないと全体が締まらない証明になってしまう。ま

るで、ビルの設計者が設計図を片手に説明し、最後に、この手順通りに建設すれば、どん

な高いビルでも建てることができるんだよ、と自信を持って説明を終わっている感じであ

る。

　実際のビルはこんな単純なものではない、というのは(;&(//(17な高校生はみんな

理解している。下層階と上層階では風の強さも違うだろうし、上に乗っている重さも下に

なればなるほど膨大なものであろう。さらに、ビル全体の膨張の度合いも中間と上下では

かなり違うだろうと予想ができる。しかし、数学では、綺麗に作っていけば、月にまで到

達するビルが建つんだよ、と夢を語っているようで、私は数学的帰納法が好きである。
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�３��の解法

まず、取り出した玉が白になるか赤になるかは、試行が停止することに影響しないことに

着目する。つまり、玉５個がなくなると試行が停止するので、ちょうど�Q�回で試行が停

止するには、硬貨が、Q���回までに４回表が出て、Q�回目に５回目の表が出る、という

確率を求めればよい。
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��������������������ここでQ���なので��Q 
�� !��より

　　　　　　　　　　　　��Q!��Q 
��

　　　　　　　　　　　　��Q���

　　　　　すなわち、��Q���のとき� QS � �Q �S

　　　　　　　　　　Q ��　��のとき� QS  �Q �S

　　　　　　　　　　Q!��　��のとき� QS ! �Q �S

これより、 �S � �S � �S � �S  �S ! ��S ! ��S ! ��S !……となるので、

QS �が最大となるのは、Q ��または�Q ��である。

※なかなか面白い問題であるが、試行をQ�回�と発展させる問題の作成はかなり難しいと

思う。最初、ちょうどQ�回目で手元の玉が白玉１個、赤玉１個になる確率を求めさせるの

かな、と不安になりながら問題を読むと、ちょうどQ�回目で試行が停止する確率というこ

とで、ホッとしながらも、じゃあ�１�と�２��は何の為にあるのかな、と訝ってしまう。で

も、ちょうどQ�回目の試行で玉を残したとして、手元にある玉が白玉１個、赤玉１個とな

る確率を求めよ、というのはかなりの難問になるのかなと思う。それをさらに試験時間内

で解かせるには無理があるだろう。これは、最後の玉が白か赤によって場合分けされ、白

のときはQ���回目までに手元に１個の赤を残さねばならない、などとして解いていくの

だろうが、手元に１個残した時点で、箱の中の玉の個数が変わってしまうのに気付くかど

うか。さらに気付いたとしてもそれをどのように解くかが難しいだろう。
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�３��の解法
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�
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�の円上にある。
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　　　よって、点]�の描く図形は右の通りである。



※この問題の図形を3<7+21を使って表示してみた。ただし、複素平面上ではなく、

実部�[ �
W

��W �
、虚部�\ 

�

��W �
�として、W�を媒介変数として[\�平面上に表示した。

�����������������3<7+21������������������
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［出力結果］
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これより、P�が奇数ならば、$� 
P���Q �は有理数になる。また、$� 
P���Q  $� 
Q���P �なの

で、上と同様にして、Q�が奇数ならば、$� 
P���Q �は有理数になる。

※この問題の参考として、以下に教科書の内容を掲載する。
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QVLQ [G[�の値

　Q�は���または正の整数とする。このとき，次の定積分を求めてみよう。
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