
２０２０年度　大阪大学　数学（理）
(;&(//1(7な高校生のための入試問題解説

　大阪大学の入試問題を実際にその場で解くことを想定

して解説する。通常の解説本と何が違うのかと言えば、

解法を見つけ出すまで、かなりの試行錯誤を繰り返すと

思うが、その解答に至るまでの思考の過程を中心に解説

している。さらに、3\WKRQシリーズとしての本なので、

プログラムが出来る箇所はプログラミングを試みる。

　難関大学の入試問題を解くとき、現役時代ならまるで

神の啓示でもあったかのように解き方が見えてきたが、

年齢を重ねるにつれてそのようなことはなくなってしま

った。さらに５題を続けて考えきる知力�体力もなくなっ

た。有名な解説本は、そのような啓示と知力�体力を持っ

ている人が書いていると思われる。しかし、その解法は

その場で思い付かないよな、というものも多く見受けら

れる。寧ろ、定年退職した著者の解説本の方が分かりや

すいのではないか、と自画自賛しながら書いている。



（１）の問題は、まずはグラフがどのようになるのかな、と考え、この両辺のORJ�を取

ってから微分して増減表を作ってみる、という、まさに微分の王道のような問題である。
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（２）の問題は、極限の基本的な問題である。そのまま次のように筆が進むと思う。
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※入試問題としてはあっさり解けてしまったので、果たしてこれでいいのかどうか不安に

なる。ここで、
�
や
�

�
�は不定形で、極限値を求める場合式変形をしなければならな

い、というのは受験テクニックとしては必須項目である。そこで、����は果たしてどう

だったかな、と不安が横切るが、��は��としての収束値なのでそのような心配はいらない。

実際、増減表を考えても、[ ��が漸近線になるので、その傾きは限りなく��に近づく。

ある意味、簡単過ぎてむしろ戸惑ってしまう問題であろう。

（３）は（１）と（２）が出来れば、そのまま概形図を描けばよい。さらに、グラフの凹

�[2

�

H��

�

HH

�\ �

�\ [�\

凸も調べなくて良いので、受験生にとっては、やったぁ～と叫びたく問題だろう。



せっかくだから、ここで3\WKRQを使ってこのグラフを描画してみる。
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�１��を解く。まず、 �= �とは何か、を考えなければならない。つまり、この問題文をしっ

かりと読めるかどうか、ということであろう。 �< �< �< … Q< �を Q= �で表す、とあるので、
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ここで、 �; 、 �; �は、�、��、��のいずれかの数である。問題文は �= �が実数でない、とあ

るので、この複素数の虚部が０以外、すなわちVLQ
�

� � 
��; �; が０以外の数でなければな

らない。ここで、VLQ
�

� � 
��; �; が０になる確率を求めて１から引く、という余事象の確

率の手法を使ってみる。VLQ
�

� � 
��; �;  ��となるのは、 �; � �; �が���になるときである。

�; 、 �; �は、�、��、��のいずれかの数であるから、 �; � �; �は���、���、�、�、��のい

ずれかであり、 �; � �; �が���になるのは、次の３通りである。
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①は、サイコロを２回投げて、１回目に２の目、２回目に１の目が出る確率なので、
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③は、１回目に３～６の目、２回目も３～６の目が出る確率なので、
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よって、 �; � �; �が���にならない、すなわち �= �が実数でない確率は���
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次に�２�を解く。�１��と同じように考えるならば、 �= 、 �= 、 �= 、…、 Q= �がいずれも実数で

はない、の余事象は、 �= 、 �= 、 �= 、…、 Q= ��の少なくとも一つは実数である、となる。

実数であるのを N= �とおくと、VLQ
�

� � 
�����; �; �; … N;  ��となるので、

�; � �; � �; �…� N; �が０及び負の数を含む３の倍数になればよい。

つまり、 �; � �; � �; �…� N;  �P、ただし、P�は整数�となるが、これを使ってこの

問題を解くのは、ちょっと大変そうである。例えば、N ��のときを考えたら、

����� �、����� �、������ ���のように、ある程度パターン化出来なくも

ないが、ちょっと煩雑になりすぎる気がする。それで、他に何か手法がないかな、と頭を

悩ましてみる。そのとき、下の教科書の内容を思い出した。
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例�で求めた���個の���の���乗根は，点���が分

点の���つとなるように，単位円を���等分す

る���個の分点を与えている。

　よって，これらの点は単位円に内接する

正六角形の頂点になっている。

��������������������「数学Ⅲ（数研出版）」の抜粋������

これを使えないか考えてみると、この問題は上の図の６つの頂点に存在する確率、という

ことになる。つまり、上の図において、点が �= �、 �= �、 �= �および �= にくる確率を求める、

ということになる。この図での Q= �と問題文の Q= �は違うものなので、混乱を避けるために

新しい図を考える。まず、点の名前を� �$ �から� �$ �とし、さらに新たに「 N= � 
�$ 」�をN�回
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目の試行のときに、 �$ にいる確率とする。ここでN�回目に �$ �にいる確率を考える。

N���回目からN�回目に �$ �にいる確率は、 �$ ��� �$ �または

� �$ ��� �$ �または �$ ��� �$ ��であるが、 �$ �と �$ �には、点が

こないので、� �$ ��� �$ �はありえない。つまり、� �$ ��� �$ �

と �$ ��� �$ ��の２通りである。このことを踏まえて漸化式

を作ると、

N= � 
�$  �N �= � 
�$ �
�

�
� �N �= � 
�$ �

�

�
……①

同様にして、N���回目からN�回目に �$ 、� �$ 、� �$ �にいる

確率は、 N= � 
�$  �N �= � 
�$ �
�

�
� �N �= � 
�$ �

�

�
……②

　　　　 N= � 
�$  �N �= � 
�$ �
�

�
� �N �= � 
�$ �

�

�
……③

　　　　 N= � 
�$  �N �= � 
�$ �
�

�
� �N �= � 
�$ �

�

�
……④

①＋②　 N= � 
�$ � N= � 
�$  �N �= � 
�$ �
�

�
� �N �= � 
�$ �

�

�

　　　　　　　　　　　 
�

� � �N �= � 
�$ �� �N �= � 
�$

　これは、数列� N= � 
�$ �� N= � 
�$ が、初項�� �= � 
�$ � �= � 
�$  
�

�
�� 

�

�
�、公比�

�

�
�の

等比数列なので、 N= � 
�$ � N= � 
�$  
�

�

�N �

� �
�

�
……⑤

同様にして③＋④を計算すると、 N= � 
�$ � N= � 
�$  
�

�

�N �

� �
�

�
……⑥

以上より、N�回目に実数でない、すなわち、点が �$ �か �$ �か �$ �か �$ �上にいる確率は、
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これはN�回目に実数でない確率であるが、この漸化式を作ったときにN���回目も実数で

はないとしている。

　すなわち、 �= 、 �= 、 �= 、…、 Q= �がいずれも実数ではない確率は、
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�３��は� Q= �が実数となる確率なので、Q�回目より前が実数になるとは言っていない。これ

を念頭に置いて�２�と同様にして漸化式を作ってみる。
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ここで Q= �が実数になるには、 �$ または �$ のときなので、
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この形を見て、しばし途方に暮れてしまった。このやり方では解けないんじゃないか、と

不安になってしまった。これが本番ならば、時計を見つめながら背中のいやな汗を感じる

ことだろう。このとき、あっ、と気付く。それは次の一行である。
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全事象の確率は１である。言われてみれば当たり前であるが、ここでそれを気付くかどう

かである。これで� �N �= � 
�$ � �N �= � 
�$ だけで漸化式が作れると思い、もしここが受験会

場であったとしても声を上げて喜んでいただろう。

　 �N �= � 
�$ � �N �= � 
�$ � �N �= � 
�$ � �N �= � 
�$  ��� �N �= � 
�$ �� �N �= � 
�$ となって、

　つまり、 N= � 
�$ � N= � 
�$  
�

� � �N �= � 
�$ �� �N �= � 
�$ �
�

� ��� �N �= � 
�$ �� �N �= � 
�$ �

　　　　　　　　　　　　 
�

�
�
�

� � �N �= � 
�$ �� �N �= � 
�$

　ここで、 N= � 
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　この形は、漸化式の定番である。以下に教科書の内容を載せる。
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�〇�  �Q �D �QSD T�の形

　S，T�は定数で， 
S �， 
S ��とする。数列�� �QD �について，漸化式

　　　　　　　　　　  �Q �D �QSD T　　……�①

と初項� �D �が与えられたとき，一般項� QD �を求める方法を考えよう。

�

 �Q �D �QSD T

 F �SF�� T

 ��Q �D F S� 
�QD F

　①�に対して，等式

　　　　  F �SF T　　……�②

を満たす定数�F�を考える。①�②�から

　　　　  ��Q �D F S� 
�QD F

よって，数列�� QD ��F �は初項� �D �F，公比�S�の等比数列であり，このことを利用して，

一般項� QD �が求められる。

　例えば，漸化式�  �Q �D �� QD ��は，  F ��F ��を満たす定数�  F ���を用いて，

 ��Q �D � �� 
�QD � �と変形することができる。このことを利用して，次の問題を考えてみ

よう。

例題�　次の条件によって定められる数列�� �QD �の一般項を求めよ。

　　　　　　　　　　　 �D  �，　 �Q �D  � QD ��

　解　 �Q �D  � QD ���を変形すると　　 �Q �D �� �� QD 
��

　　　ここで， QE  QD ���とおくと

　　　　　　　　　 �Q �E  � QE ，　 �E  �D �� ��� �

　　　よって，数列�� �QE �は初項��，公比���の等比数列で QE  �･
�Q ��



　　　 QD  QE ���であるから，数列�� �QD �の一般項は

　　　　　　　　　 QD  �･
�Q �� ��
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　この解法をしっかりと理解して覚えている人は、漸化式が� N7  
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　になった時点で、解けた、と確信する。つまり、
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　この N7 �とは、N�回目の試行で点が �$ �または �$ �になる確率、すなわち、N�回目の試行で

　 N= �が実数になる確率である。つまり、 Q= �が実数になる確率 QS  
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※この問題のポイントは、�２�と�３�の違いを理解できるかどうかなのでは、と思う。正直

に言って、最初�２�を解くときに、�３�を解いてから余事象を使って�２�を解こうと考えた。

でも、わざと順番を逆にするような入試問題は見たことがないな、と悩んだ末、�３�の余

事象が�２�にならないことに気付いた。要するに、問題文にある「 �= 、 �= 、 �= 、…、 Q= �

がいずれも実数ではない」という文言をどのように捉えるか、ということである。次に考

えたのは、 �= 、 �= 、 �= 、…、 Q= �が実数でない確率を一つずつ求め、それを全て掛けるの

かな、と考えた。が、それも簡単ではない。それではどうするか。とそのとき、上の解答

にある図が浮かんできて、漸化式を作ろう、と思い付いた。これでようやく、問題文にあ

る「いずれも」という意味が分かった。つまり、Q�回の全ての試行で、一度も �$ �と �$ �に

は止まらない確率を求めよ、という意味である、ということが分かった。このような過程

を踏まえて、上の解き方が見えてきた。

　解き終わってみるとなかなか面白い問題だった気がする。が、解いている最中はまさに

暗中模索、暗闇の中を闇雲に走っているだけで、迷子になったような気になってしまって

た。日が差してきたのは、図を使って漸化式で解いてみよう、と思い付き、その漸化式が

解けそうだ、気付いた時である。まさに一条の光が差してきた気分である。その光に向か

ってまっしぐらに進んでいるときは、一心不乱、食事を取るのも忘れてしまう。このよう

な経験が、将来何か新しいものを創り出すときに、([FHOOHQWな高校生にとって特に大事

なことなのでは、と思う。



この問題を読んだとき、いろいろなものを思い出すが、それをまとめてみる。
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$

% &

$

% &D

EF

正弦定理

△$%&�の外接円の半径を�5�とすると

　　　　　　　　　
D

VLQ $
 

E

VLQ %
 

F

VLQ &
 �5

　以下では，△$%&�において，頂点�$，%，&�に向かい合う

辺�%&，&$，$%�の長さを，それぞれ�D，E，F�で表し，�$，

�%，�&�の大きさを，それぞれ�$，%，&�で表す。

三角形の���つの頂点を通る円を，その三角形の��外接円��という。

三角形について，次の��正弦定理��が成り立つ。
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三角形の３辺の大小関係

　��つの三角形において

　　１　��辺の長さの和は，他の���辺の長さより大きい。

　　２　��辺の長さの差は，他の���辺の長さより小さい。

　逆に，正の数�D，E，F�が�①�を満たすとき，��辺の長さが�D，E，F�である三角形が存在

する。①�を���つの式にまとめると，次のようになる。�

　　　　　　　　　　　　 E�F �D�E�F

　また，正の数�D，E，F�の中で�D�が最大であれば，��辺の長さが�D，E，F�である三角形

が存在するための条件は，D�E�F�である。

【注意】 E�F �は�E�F�のとき�E�F，E�F�のとき�F�E�を意味する。

大

大

小

小

三角形の辺と角の大小関係

　��つの三角形において

　　１　大きい辺に向かい合う角は，小さい

　　���辺に向かい合う角より大きい。

　　２　大きい角に向かい合う辺は，小さい

　���　角に向かい合う辺より大きい。
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例題　[!��のとき，次の不等式が成り立つことを証明せよ。

　　　　　　　　　　　　　 [H !��[

証明　I � 
[  
[H ��� 
�[ �とおくと　　　　I � � 
[  

[H ��

　　　[!��のとき， [H !��であるから　　I � � 
[ !�

　　　よって，I � 
[ �は�[���で単調に増加する。

　　　このことと，I � 
�  ��から，[!��のとき　　I � 
[ !�

　　　したがって，[!��のとき　　　　　 [H !��[　　　　　　　W

$

% &
D

E
F
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いろいろ悩んだ挙句、以下のような証明になった。

　F�QE �の証明は、QE�F�がQ�２以上の自然数において

　常に正になることを示せばよい。

　�$%& %、�$&% &、�%$& $�

　さらに、外接円の半径5とおくと、

　正弦定理より、E �5VLQ%、F �5VLQ& �となる。

　ここで、) QE�F�とおくと、

　) QE�F �Q5VLQ%��5VLQ  & �5� 
�QVLQ% VLQ& となり、

　さらに、& Q%�なので、) �5�QVLQ% 
�VLQQ%

　ここで、関数I� 
[  QVLQ[�VLQQ[ �について考える。

　I �� 
[  QFRV[�QFRV  Q[ Q� 
�FRV[ FRVQ[

　��[���のとき、\ FRV[ �は単調減少になるので、[�Q[���なので、

　FRV[!FRVQ[ �となる。すなわち�I �� 
[  Q�FRV[ 
�FRVQ[ !��となる。

　これは、I� 
[ �が単調増加となることを示していて、さらに、I� 
�  ��なので、

　��[���でI� 
[  QVLQ[�VLQQ[!��となる。

　要するに、��%���なので、) �5�QVLQ% 
�VLQQ% !��となる。

　以上より、�$&% Q�$%& �のとき、F�QE �となる。

※この問題は、何を訊きたいのか分からない問題である。最初は、数学的帰納法で証明す

るのかな、と考えたけど、関数を使って証明した方が簡単じゃないかな、と気付いて、上

のような解答にした。多分、もっと面白い解法があるとは思うが、実際の本番で出題され

たら、そのような証明を考えるよりは、手を動かしたくなるだろう。解き終わっても、正

解なのかどうか、かなり不安になる。もしかして、突っ込まれる箇所があるのでは、と思

ってチェックするが、そのような箇所が見つからない。私が高校生だったときに、絶対大

丈夫、と安心して提出した答案に、うっかりミスがあり、悔しい思いをした経験が多々あ

る。それが頭によぎってしまう問題である。



まず数学Ⅲの教科書を復習してみよう。
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　面積Ⅱ

　区間�� �D，E �で常に�I � 
[ �J � 
[ �のとき

　　　　　　　　　　　6 ' D

E

� ��I � 
[ J � 
[ G[

例題��　区間�
�

�
�[�

�

�
��において，��つの曲線�\ VLQ [，\ FRV[ �で囲まれた部分

　　　の面積を求めよ。

[�

�\

�2 �
�

�
�

�

��

�
�
�
�

�
�
�

\ VLQ[

\ FRV[

　解　���つの曲線の交点の�[�座標は，方程式

　　　　　　VLQ [ FRV[

　　　の解である。

　　　
�

�
�[�

�

�
��の範囲においてこれを解くと

　　　　　　[ 
�

�
，
�

�
�

　　　また，図からもわかるように，与えられた区間では　VLQ [�FRV[

　　　であるから，求める面積�6�は

　　　　　　　　　6 ' �
�

�
� �

� 
�VLQ[ FRV[ G[

　　　　　　���　　　 
�
�

�
� �

� ��FRV[�VLQ[  �(�
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[�

�\

�2 � � � �

�

�

�

�� ��

W�

W�

　W 
�のときを考えるので、右図のように

W!��としても極限値には影響しない。

ここで、\ 
�

[
�と\ �[�W�との交点の[�座標を

�、�������������とおくと、

6� 
W  
�

�
�W �' �

�

� ����[ W
�

[
G[

　　 
�

�
�W �

�

�

� ����
�

�
�[ W[ ORJ [

　　 
�

�
�W �
�

� �
�� 
� �� �W�� 
�� �ORJ � �ORJ �

　　 
�

�
�W ��� 
�� �

�

� �� 
�� ��W �ORJ
�

�

�、��は、方程式�
�

[
 �[�W�の解、すなわち�次方程式� �[ �W[�� ��の解となるので、

� 
�W ( ��W �

�
、� 

�W ( ��W �

�
�となる。

これより、��� W、��� ( ��W � 、
�

�
 
�W ( ��W �

�W ( ��W �
 

���W � W( ��W �

�

これらを代入すると、6� 
W  
�

�
�W �
�

�
W( ��W � �ORJ

���W � W( ��W �

�

よって、
�W 

OLP  � 
�6� 
W �ORJW

�W 

OLP� ����

�

�
�W
�

�
W( ��W � ORJ

���W � W( ��W �

�
�ORJW

　　　　　　　������������������� 
�W 

OLP� ���

��W W( ��W �

�
ORJ

���W � W( ��W �

�
ORJ �W

���������������������������������������������� 
�W 

OLP� ��

W� 
�W ( ��W �

�
ORJ

���W � W( ��W �

� �W

���������������������������������������������� 
�W 

OLP� ��

�W

�� 
�W ( ��W �
ORJ

���W � W( ��W �

� �W

��������������������������������������������� 
�W 

OLP �

�

� ��� ) ��
�
�W

ORJ

���
�
�W ) ��

�
�W

�

�������������������������������������������� 
�

� 
�� ( �� �
�ORJ

��� � �

�

�������������������������������������������� 
�

�
�ORJ�

�������������������������������������������� �

※まさに教科書通り、数学Ⅲの直球ど真ん中の問題である。教科書でこの単元を教えた後

に、応用問題として使える問題である。



$�

%� &�

�D�

�F �E�

高さK�

△$%&�の高さをK�とおくと

K�は２つの円錐の底面の半径になるので、

回転体の体積�9 
�

�
� �K D �となる。

ここまでは、誰でもが考え付くことと思う。

その後、D�E�F ��という条件をどのように使うのかに頭を悩ましてしまう。D�を固定

し、E�の値を変化させるので、�$%& ��とおいて、体積9�をD�と��で表して、��の関数

とみなして最大値を求めようかな、と思ったが、D�E�F ��という条件をどのように使

ったらいいのか、皆目見当が付かなかった。そこで、このD�E�F ��というじっと見て

いたら、次の公式が思い出された。
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ヘロンの公式

　△$%&�の面積�6�を，��辺の長さ�D，E，F�で表してみよう。

$

% &D

EF
$

　余弦定理により，FRV$ 
���E �F �D

�EF
�であるから

　　　　 �VLQ $ �� �FRV $ �� 
�FRV$ �� 
�FRV$

　　　　　　　 �� ��
���E �F �D

�EF �� ��
���E �F �D

�EF

　　　　　　　 
����EF �E �F �D

�EF
�

����EF �E �F �D

�EF

　　　　　　　 
��� 
�E F �D

�EF
�

��D �
� 
�E F

�EF

　　　　　　　 � 
��D E F � 
���D E F � 
��D E F � 
��D E F

� �E �F

ここで，D�E�F �V�とおくと



　　�D�E�F ��V 
�D ，D�E�F ��V 
�E ，D�E�F ��V 
�F

したがって　　　　　　 �VLQ $ 
�V� 
�V D � 
�V E � 
�V F

�
� 
EF

VLQ$!��であるから　��VLQ$ 
�(V� 
�V D � 
�V E � 
�V F

EF

これを�6 
�

�
EFVLQ$ �に代入すると，次の��ヘロンの公式��が得られる。

　　　　6 (V� 
�V D � 
�V E � 
�V F 　ただし　V 
��D E F

�
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これを使ってみようと考えたら、次のような答案になった。

△$%&�の面積�6�とおくと、
��D E F

�
 
�

�
 ��なので、

ヘロンの公式より面積�6 (� 
�� D � 
�� E � 
��D E � 。さらに、6 
�

�
DK�なので、

K 
�(� 
�� D � 
�� E � 
��D E �

D
となる。ここで、D�の値を固定してEの値を変化させて、

体積9�が最大になるときを考えるので、D�を定数として体積9� 
E �を式変形すると、

�9� 
E  
�

�
��K D 

��� 
�� D � 
�� E � 
��D E � D

� �D
 
��� 
�� D � 
�� E � 
��D E �

�D

　　 
��� 
�� D

�D ��
�E ��D 
�� E�D ���  

��� 
�� D

�D ��
�

� ��E
�� D

�
�

�
� 
�D �

�
�D ���

　　 �
��� 
�� D

�D �
�

� ��E
�� D

� ��
�D

�

　ここで、D�E�F ��さらに�D�E�F�より�D���D、��D��なので�
��� 
�� D

�D
��

　となるので、9� 
E �は上に凸の放物線となり、E 
�� D

�
�のとき、最大値�をとる。

　ここで、E 
�� D

�
をD�E�F ��に代入すると、

　F ��D�E ��D�
�� D

�
 

���� �D � D

�
 
�� D

�
�となるので、

　よって、9� 
E �はE F�の二等辺三角形のときに最大となる。

�２��　�１��よりE 
�� D

�
�のとき、最大値���

��� 
�� D

�D � ��
�D

�
 

�� 
�� D D

�

これをD�の関数とみなして、9� 
D  
�

� ��
�D 
�D  

�

� ��
�

� ��D
�

� ��
�

�

これより、D 
�

�
�、E 

�

�
のとき、最大値�

�

��
�となる。



ここで3\WKRQを使って体積9のグラフを描画してみる。
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※このプログラムで表示されている最大となる赤点は、先ほどの解答を確認するつもりで、

（�）で求めた値をそのまま使っており、プログラムとして関数の最大値を求めたもので

はない。このグラフを見ると上の答えは正解であると確信できる。


