
２０２０年度���名古屋大学���数学��理�
(;&(//1(7な高校生のための入試問題解説

　名古屋大学の入試問題を実際にその場で解くことを想

定して解説する。通常の解説本と何が違うのかと言えば、

解法を見つけ出すまで、かなりの試行錯誤を繰り返すと

思うが、その解答に至るまでの思考の過程を中心に解説

している。さらに、3\WKRQシリーズとしての本なので、

プログラムが出来る箇所はプログラミングを試みる。

　難関大学の入試問題を解くとき、現役時代ならまるで

神の啓示でもあったかのように解き方が見えてきたが、

年齢を重ねるにつれてそのようなことはなくなってしま

った。さらに４題を続けて考えきる知力�体力もなくなっ

た。有名な解説本は、そのような啓示と知力�体力を持っ

ている人が書いていると思われる。しかし、その解法は

その場で思い付かないよな、というものも多く見受けら

れる。寧ろ、定年退職した著者の解説本の方が分かりや

すいのではないか、と自画自賛しながら書いている。
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この問題を読んだとき、２次曲線と直線から２次方程式を作って、その２つの解が異符号

になる条件を見つければよい、という直球勝負の問題なのかな、とまず思う。しかし、こ

の手の直球には、たまに癖玉があって、所々落とし穴があったりする。この手の落とし穴

としては、式変形で文字の割り算をするとき、それが０であるときの真偽を考えなければ

ならない、というのを忘れてしまうことである。この場合、直線を\ 
D

E
[�
�

E
�とするの

で、E ��の真偽であるが、このとき�D[ ��となり、D
�なので、直線[ 
�

D
となって、

[�軸に垂直な直線となる。これは２次曲線と直線が少なくとも２点で交わるという条件に

は適さない。ということは、本当に直球であり、そのまま球に合わせて打ち返せばヒット

になりそうな問題である。ただ、直線�D[�E\ ��の形が綺麗なので、何か見事な解法が

ありそうな気がするが、本番にはそれを考えている時間的な余裕もないだろうし、代入し

て作る２次方程式の式変形もそれほど面倒くさいものでもなさそうなので、まさにそのま

まバットを出して打ち返したのが以下の解法である。



����の解法　�次曲線と直線が共有点を２つ持ち、その[�座標が異符号になるようなD、�E�
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の条件を求めよ、という意味になる。

直線�D[�E\ ��において、

E ��の直線は問題に適さないので、E
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問題から解が少なくとも２つあるので、２次方程式にならなければならない。すなわち、

�E � �D 
��のとき、この２次方程式の解を�、��とおくと、

�、��が異符号の実数解を持てばよいので、�����となる。すなわち、 �E � �D 
��かつ　

�����が上図のような正負での共有点を持つための必要十分条件である。

ここで、２次方程式の解と係数の関係から、�� 
��� �E

��E �D
���から、 �E � �D !�となり、

これは �E � �D 
��も満たすので、よって、D、E�の条件は、 �E � �D !�となる。

次に、����を考えるが、����の条件を満たす点$� 
D���E �は不等式の領域�\![�かつ�\!�[�ま

たは�\�[�かつ�\��[�である。この条件を満たす点$� 
D���E �の中で、三角形が出来ない

のは、点$� 
D���E が直線上にあるときだけであるが、 �D � �E  �となるのは、����からあり

えない。つまり、これも直球勝負の問題だと思う。要するに、線分34�の長さを２点間の

距離で求めて、それを底辺とし、点$�から直線�D[�E\ ��への距離を求め、それを高さ

にする。まさに、教科書に出てくるような標準的な問題である。
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����の解法　右図のような三角形の面積を

求める問題であり、このとき２点3、4�
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さらに、この三角形の底辺を34としたときの高さは、直線D[�E\ �と点$� 
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これより三角形$43�の面積6 
�(� 
���E �D � � 
��D �E

��E �D
･

���E �D �

( ��D �E
･
�

�

　　　　　　　　　　　　　� � 
���E �D � ( ���E �D �

��E �D

�次に、����から6 � 
���E �D � ( ���E �D �

��E �D
、この最小値を求めるので、やはり �E � �D �

を一つの文字で置き換えての関数を考えようと思うが、何か不都合な点がないか不安にな

る。���から �E � �D !��なので、その条件は付くが、その他に隠れた条件があるのではな

いか、D、E�の実数条件から �E � �D �に影響を与えないか、などを考えてみるが、どうやっ

てもそのような条件はなさそうである。最後の最後まで直球勝負の問題であり、教科書内

容を確実に理解しておけば１�は解ける問題だと思う。

���の解法　����の面積において、 �E � �D  [�とおくと�
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ここで教科書の内容を抜粋する。この他に分数関数での微分を使用しているが割愛する。

���������������������「数学Ⅲ」（数研出版）の抜粋�����
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　　４　双曲線上の点から���つの焦点までの距離の差は��D

　　５　双曲線は�[�軸，\�軸，原点�2�に関して対称
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　この問題は一読しただけでは、何を言っているのか皆目見当も付かなかった。

２、 �P ��、 �P ���のうち１つをD�とする、と言いながら、D�をすべて求めよ、とは果

たして何を言っているのだろうか。これを学校の定期考査で出題したら、生徒たちのブー

イングの山が目に浮かぶ。([FHOOHQWな高校生ほど、不平不満を直接言ってくるように思

う。これを、普通の高校生にも分かるように問題を変えたら、次のようになるだろう。

「３つの数�２、 �P ��、 �P ��のうち、１つをDと対応させ、残りの２つをE、F�に対応

させる。このとき、 �D �EF�となるD�に対応するのは２、 �P ��、 �P ���のうちどれか。

ただし、一つとは限らない。」　となるだろう。

���の解法　��

　 �P ��と �P ��が素数なので、P�は偶数となる。

　ここで３つの数�２、 �P ��、 �P ���のうち１つをD�とするので、次の場合分けをする。

�ⅰ���D ��のとき
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�� �となり、P�は２より大きい整数なので、 �D �EF�は明らか。
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　よって、 �D �EF�は成り立つ。
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　これはPは２より大きい整数なので、負になる。すなわち� �D �EF�は成り立たない。

�ⅰ�～�ⅲ�より　 �D �EF�となるD�は、２または� �P ���である。

次の�����も捉えどころのない問題である。左辺が[�\�と �[ �� �\ ��[\�の積であるが、　

右辺は３つの積であり、これを左辺の２つを右辺の３つに振り分けるとき、単に場合分け

でするのか、それとも([FHOOHQWなやり方があるのか、と考えてしまう。 �[ �� �\ ��[\

 �[ ��[\� �\ � �\  �
� 
�[ \ � �\ �なので、これを利用できないかな、などと思うが、場

合分けは高々３通りチェックするだけということに気づいたら、「下手の考え休むに似た

り」ということで考えてもしょうがない、無粋に解いてみよう、と思った。



����の解法　

　与式：�[ 
�\ �
�[ �� �\ 
��[\  ��

�P 
�� �
�P 
��……� 
$ の左辺について、まず[�\�と

　 �[ �� �\ ��[\�の大小を考える。

　�
�[ �� �\ 
��[\ ��[ 
�\  �

� 
�[ \ ��[ 
�\ � �\

　　　　　　　　　　　　 �
� 
�[ \ ��[ 
�\ � �\

　　　　　　　　　　　　 
�

� ���[ \
�

�
� �\ �

�

�
!��　� ��\�は正の整数

これより左辺の因数の大小は、 �[ �� �\ ��[\![�\……� 
% �となる。

　次に� 
$ �の右辺について考える。左辺と比較するために、右辺を２つの積に分けると、
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※この問題は、結局何を訊いているのかが分からない、と感じる受験生が多いだろう。数

学的な読解力を試すような問題なのだろうが、いまいちピントこない。でも、この解いた

答えに何か重要な意味があり、現代数学のホットな話題の一つに繋がるんだ、と言われた

としたら、へぇ～そうなんだ、と思うが、浅学菲才の私には皆目分からない。分からない

人にとっては、解き終わった後の達成感もない。ここｓｗ、せっかくだから3\WKRQを使

って、 �P ��と �P ��が素数になるP�の値を�����まで求めてみる。

［出力結果］
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特別、面白い結果ではないが、�����までの数の２以外の一の位には、２と８が現れない、

ということぐらいであろうか（その後�����まで調べてみたが、現れなかった）……それ

がもし全てがそうならば、整数論を専門にする人にはなかなか面白い話しになるのでは、

と思うがその真偽は分からない。上記のプログラムを以下に載せる。
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　この問題を読んだときは、単純に微分して、区間���[�
�

�
�で)� 
[ �が単調増加になっ

て)� 
�  ��で)� 
[ ���になるんだろう、という予想で解いてみようとしたが、どんなに頑

張っても) �� 
[ ���にならなかった。ここで、)� 
[ �が単調減少になったとしても、�)� �
�

�

 �となれば、)� 
[ ��となる、ということに気付くのにかなり時間を費やしてしまった。

これが本番の試験ならば、かなり焦ったと思うが、こっちはコーヒーを飲みながらのんび

り解いているので、プレッシャーはほとんどなかったが、この方向転換に気付いたときは、

ボーとしていた頭が急に活性化され、筆の勢いが上がり、最後まで一気に解いてしまった。

解けてしまえばなかなか面白い問題だと思うが、受験生にとっては、限られた時間内に解

かなければならないプレッシャーがある中ではかなりの難問であろう。
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※この解法に至るまでには、いろいろな試行錯誤をした。まず) �� 
[ �の次に) ��� 
[ �を求め

て、I ��� 
[ !��という条件から、) ��� 
[ !��を導き、) �� 
[ �が単調増加になって、それから



) �� 
[ !�、)� 
[ �は単調増加となるのかな、と思っていろいろやってみたが、全て駄目で

あった。それから一気に方向転換をして、I ��� 
[ !��からI �� 
[ �が増加関数になるというの

を利用するのだ、と気付くまでにはかなりの時間を要した。反省としては、��[�
�

�
�で

)� 
[ ���という証明は、全て単調増加でする、という固定観念がいけなかったと思う。

)� �
�

�
 I� �

�

�
�I�� ��

�

�
�I�� ��

�

�
�I��� ��

�

�
 ��と気付いた時点でようやく囚わ

れていた観念から解放され、解決へと導いてくいれた。

次に����を考えるが、����の結果を使うのは常道であるが、どのように使うのかに頭を悩ま

した。最初は部分積分を考えて' �
��

I� 
[ FRV[G[ �
��

� �I� 
[ VLQ[ �' �
��

I �� 
[ VLQ[G[としたが、

これ以上の発展はなかった。次に、' �
��

I� 
[ FRV[G[�の�[�に���W、��W�、���W�などと

置換してみたが、駄目だった。与式を四分割して、それぞれを����の結果に合うように置

き換えていく、ということに気付くまで、これもまたかなりの時間を費やしてしまった。

����の解法

　' �
��

I� 
[ FRV[G[

　 ' �
�
�

I� 
[ FRV[G[ ��' �
�

�

I� 
[ FRV[G[ �' �

��
�

I� 
[ FRV[G[ ' ��
�

��

I� 
[ FRV[G[……� 
$

ここで、�' �
�

�

I� 
[ FRV[G[において、[ ��W�とおくと、

　　　　[�
�

�
��のとき、W�

�

�
��となり、�G[ GW�なので、G[ � 
�� GW

　�　　　' �
�

�

I� 
[ FRV[G[ ' �
�

�

I� 
�� W FRV  � 
�� W � 
�� GW ' �
�

�

I� 
�� W FRVWGW

　�　　　　　　　　　��� �' �
�
�

I� 
�� W FRVWGW　

　　　　よって、' �
�

�

I� 
[ FRV[G[ �' �
�
�

I� 
�� [ FRV[GW……①

次に、�' �

��
�

I� 
[ FRV[G[において、[ ��W�とおくと、

　　　[���
��

�
のとき、W���

�

�
となり、G[ GW�



　　　' �

��
�

I� 
[ FRV[G[ ' �
�
�

I� 
�� W FRV  � 
�� W GW �' �
�
�

I� 
�� W FRVWGW

　�　�よって、' �

��
�

I� 
[ FRV[G[ �' �
�
�

I� 
�� [ FRV[G[……②

次に、�' ��
�

��

I� 
[ FRV[G[において、[ ���W�とおくと、

　　　[�
��

�
����のとき、W�

�

�
��となり、�G[ GW�なので、G[ � 
�� GW�

　　��' ��
�

��

I� 
[ FRV[G[ ' �
�

�

I� 
��� W FRV  � 
��� W � 
�� GW ' �
�

�

I� 
��� W FRVWGW

　�　　　　　　　　� �' �
�
�

I� 
��� W FRVWGW

　　　よって、' ��
�

��

I� 
[ FRV[G[ �' �
�
�

I� 
��� [ FRV[GW……③

①、②、③�を� 
$ �に代入すると、

　　' �
��

I� 
[ FRV[G[

　 ' �
�
�

I� 
[ FRV[G[ ��' �
�
�

I� 
�� [ FRV[G[ �' �
�
�

I� 
�� [ FRV[G[ ' �
�
�

I� 
��� [ FRV[G[

　 ' �
�
�

� ����I� 
[ FRV[ I� 
�� [ FRV[ I� 
�� [ FRV[ I� 
��� [ FRV[ G[

　 ' �
�
�

� ����I� 
[ I� 
�� [ I� 
�� [ I� 
��� [ FRV[G[

　 ' �
�
�

)� 
[ FRV[G[

　ここで���[�
�

�
�のとき、����より)� 
[ ���、さらに�FRV[��なので、)� 
[ FRV[��

　よって、' �
�
�

)� 
[ FRV[G[��

����は����の流れから、多分似たような流れになると考える。FRV[ �は、��[�
�

�
で正、

�

�
�[��で負、��[�

��

�
で負、

��

�
�[���で正なので、���のような四分割になった

と思うが、VLQ[ �は、��[��で正、��[���で負なので、分け方を２分割でいいかな、

と予想して解いた。



���の解法

����と���を参考にして、

　　' �
��

J� 
[ VLQ[G[ ' �
�

J� 
[ VLQ[G[�' �

��

J� 
[ VLQ[G[……� 
$ について考える。

ここで、' �

��

J� 
[ VLQ[G[において、[ ���W�とおくと、

　　　　[������のとき、W����となり、�G[ GW�なので、G[ � 
�� GW

�　　　��' �

��

J� 
[ VLQ[G[ ' �

�

J� 
��� W VLQ � 
��� W � 
�� GW ' �

�

J� 
��� W VLQ WGW

　　　　　�　　　�　　 �' �
�

J� 
��� W VLQWGW �' �
�

J� 
��� [ VLQ[G[

　　　これを� 
$ �に代入すると、

　　　' �
��

J� 
[ VLQ[G[ ' �
�

J� 
[ VLQ[G[�' �
�

J� 
��� [ VLQ[G[

　　　　　　　　　���� ' �
�

� ��J� 
[ VLQ[ J� 
��� [ VLQ[ G[

　　　　　　　　　���� ' �
�

� ��J� 
[ J� 
��� [ VLQ[G[

��������ここで、��[����のとき、J �� 
[ ���なので、この区間でJ� 
[ �は単調減少になる。

　　さらに、��[���のとき、[����[�なので、J� 
[ �J��� 
�[ ��

　　また、��[���のとき、VLQ[���なので、�J� 
[ �J��� �
�[ VLQ[��

　　よって、' �
��

J� 
[ VLQ[G[ ' �
�

� ��J� 
[ J� 
��� [ VLQ[G[��

　この問題で使った公式

　定積分の性質

　N，O�は定数とする。

　　　１　' D

E

NI � 
[ G[ N' D

E

I � 
[ G[

　　　２　' D

E

� ��I � 
[ J � 
[ G[ ' D

E

I � 
[ G[�' D

E

J � 
[ G[

　　　３　' D

E

� ��NI � 
[ OJ � 
[ G[ N' D

E

I � 
[ G[�O' D

E

J � 
[ G[

　　　４　' D

D

I � 
[ G[ �　　　５　' E

D

I � 
[ G[ �' D

E

I � 
[ G[

　　　６　' D

E

I � 
[ G[ ' D

F

I � 
[ G[�' F

E

I � 
[ G[

　定積分の置換積分法

　��� �のとき，区間�� ��，� �で微分可能な関数�[ J � 
W �に対し，

　D J � 
� ，E J � 
� �ならば

　　　　　　　　　' D

E

I � 
[ G[ ' �

�

I � 
J � 
W J � � 
W GW



この問題は、シンプルな確率の問題のように見えるが、実はとてつもなく難しい問題であ

った。まず、次のようなアイデアを思い付いたときは、全て解けた、と思ったのだが、甘

かった。

「この問題を先攻、後攻として考えるのではなく、後攻の持ち駒を頂点Ｃに固定させ、先

攻の駒だけを移動させ、その駒が頂点Ｃに来た時をゲーム終了とする。そのとき、Q�が奇

数ならば先攻の勝ちとし、Q�が偶数ならば後攻の勝ちとすると、問題文の確率 QS �と同じ

になる。」

���の解法

　各頂点への移動は、留まる場合も含めて全て
�

�
である。

　Q�回目に駒が頂点Ａ、Ｂ、Ｃ、Ｄにくるパターンの回数をそれぞれ QD 、 QE 、 QF 、 QG と

おくと、 �S  �F ･
�

� �
�

�
　ここで、 �F  �E � �G  ��� ��なので、 �S  

�

�

次に、 �S  �F ･
�

� �
�

�
　ここで、 �F  �E � �G  �D � �E � �D � �G  ��なので、 �S  

�

��

����はどうやっても解けると思うが、����を考えたときに、問題文通りに求めたら、先攻、

後攻に分けて解かねばならず、かなり面倒な式になってしまう。それで、いろいろと考え

た末に出たアイデアが、一つの駒だけを動かして、頂点Ｃに来たら終りとするものである。

すると、各頂点に来るパターンがいくつあるのかを調べるだけでよくなり、敵の駒が何処

にあるのかなどは考える必要がなくなる。それでも、そのパターンを求めるのは簡単なこ

とではなかった。最初は、具体的なパターンを �S と �S まで求めて、どのような規則がある

のかを考えた。頂点Ｃに行くには、頂点Ａまたは頂点Ｄからの２通りで、ゲームを終了す

る一歩前には必ず頂点Ａまたは頂点Ｄにいる。さらに、頂点Ａは頂点Ｄからと頂点Ｂ、さ

らに自分自身に留まる３通りがあり、頂点Ｂは頂点Ａからと自分自身に留まる２通り、同



様に、頂点Ｄも頂点Ａからと自分自身に留まる２通りである。そこら辺からこれらを漸化

式にして、それを解いてみよう、と思った。

����の解法　

$�

%� &�

'� $�

%� &�

'� $�

%� &�

'�

　 QS  QF ･
Q

� �
�

�
 � �Q �E 
� �Q �G ･

Q

� �
�

�
……� 
ア

　 �Q �D  QD � QG � QE 　　　　 �Q �E  QD � QE 　　　　　 �Q �G  QD � QG

　 �Q �D  QD � QG � QE ……①、 �Q �E  QD � QE ……②、 �Q �G  QD � QG ……③

　②と③より� QE  QG �、これを①に代入すると� �Q �D  QD �� QE

　さらに②より QD  �Q �E � QE 、 �Q �D  �Q �E � �Q �E �なので、これらを代入すると

　 �Q �E � �Q �E  �Q �E � QE �� QE

　 �Q �E �� �Q �E � QE  �

　ここで特性方程式� �[ ��[�� ��を考える。これを解くと[ ��(�

　これより、 �Q �E ��� 
�(� �Q �E  �� 
�(� � �Q �E ��� �
�(� QE と式変形ができ、

　数列� �Q �E ��� �
�(� QE �は初項 �E ��� 
�(� �E  ���� 
�(�  ��(�

　公比�� 
�(� �の等比数列なので、 �Q �E ��� 
�(� QE  
Q

� 
�� (� ……④

　さらに、 �Q �E ��� 
�(� �Q �E  �� 
�(� � �Q �E ��� �
�(� QE と式変形ができ、

　数列� �Q �E ��� �
�(� QE �は初項 �E ��� 
�(� �E  ���� 
�(�  ��(�

　公比�� 
�(� �の等比数列なので、 �Q �E ��� 
�(� QE  
Q

� 
�� (� ……⑤

　④－⑤

　�(� QE  
Q

� 
�� (� � Q
� 
�� (� 、 QE  

�Q� 
�� (�
Q

� 
�� (�

�(�
、ここで QE  QG なので

　 QG  
�Q� 
�� (�

Q
� 
�� (�

�(�
、これより �Q �E � �Q �G  

��Q �
� 
�� (�

�Q �
� 
�� (�

(�

　これを�ア�に代入すると　 QS  � �
��Q �

� 
�� (�
�Q �

� 
�� (�

(�
･

Q

� �
�

�
�となり、

これを式変形すると、

QS  
�

(� � �
��Q �

� 
�� (�
�Q �

� 
�� (�
Q�

 
�

�(� � �
��Q �

� 
�� (�
�Q �

� 
�� (�
�Q ��

　 (�
� �

�Q �

� �
�� (�
� ��

�Q �

� �
�� (�
�

�となる。



※これが正しいのかどうか、また、式変形をこれで終わっていいのかどうか、非常に迷う。

まず、 �Q �E � �Q �G  
��Q �

� 
�� (�
�Q �

� 
�� (�

(�
が整数になるかどうか確認しなければな

らず、この式変形がシンプルな形になりそうな気がする。

�Q �E � �Q �G  
��Q �

� 
�� (�
�Q �

� 
�� (�

(�

ここで、 �Q �
� 
�� (�  �� ��Q �& (� � ��Q �&

�
(� �…� �Q ��Q �&

�Q �
(�

　　　　 �Q �
� 
�� (�  �� ��Q �& � 
�(� � ��Q �&

�
� 
�(� �…� �Q ��Q �&

�Q �
� 
�(�

Q���が奇数�すなわち�Q�が偶数のとき

　 �Q �E � �Q �G  
�� 
�����Q �& (� ��Q �&

�
(� … �Q ��Q �&

�Q �
(�

(�

　　　　　　 �� ��Q �& � ��Q �& ･��… �� �Q ��Q �&
�Q �
��

　　　　　　 ��Q �& ･�� ��Q �& ･
�� � ��Q �& ･

�� �……� �Q ��Q �& ･
Q
��

　　　　　　 
 N �

Q
�

& ��N ��Q �&
N�

　ここで、Q�が偶数なので、Q �O��O � ������…�
Q

�
�とおくと

　 �Q �E � �Q �G  
 N �

O

& ･��N ��Q �&
N� ……� 
$ 　これは整数になる。

Q���が偶数�すなわち�Q�が奇数のとき

　 �Q �E � �Q �G  
�� 
�����Q �& (� ��Q �&

�
(� … �Q ��Q �&

�Q �
(�

(�

　　　　　　 �� ��Q �& � ��Q �& ･��… �� �Q ��Q �&
�Q �
��

　　　　　　 ��Q �& ･�� ��Q �& ･
�� � ��Q �& ･

�� �……� �Q ��Q �& ･
�Q �
��

　　　　　　 
 N �

�Q �
�

& ��N ��Q �&
N�

　ここで、Q�が奇数なので、Q �O����O � ������…�
�Q �

�
�とおくと

　 �Q �E � �Q �G  
 N �

�O �

& ･��N ��Q �&
N� ……� 
% 　これも整数になる。

ここで、� 
$ と� 
% を一つにして、 QS  � �Q �E 
� �Q �G
Q

� �
�

�
 �

 N �

� �
�Q �
�

& ･��N ��Q �&
N�

Q

� �
�

�
とな

るが、これが使い勝手が良い形とは思わない。

よって、 QS  
(�
� �

�Q �

� �
�� (�
� ��

�Q �

� �
�� (�
�

を答の形にした。�



�����
 P �

� �
�1 �
�

& ��P �S �
 P �

� �
1
�

& �PS �を1が偶数、奇数に場合分けをして証明する。

�ⅰ���1�が偶数すなわち1 �O��O 
 ������… �のとき

　� �
�1 �

�
 Oより　左辺 

 P �

� �
�1 �
�

&  ��P �S �����S �S �S …… ��O �S

　� �
1

�
 Oより　　　右辺 

 P �

� �
1
�

&  �PS �����S �S �S …… �OS

　ここで�����の答えの中の
�� (�
�

、
�� (�
�

�をそれぞれ��、��とおくと

　 QS  
(�
� �

�Q �

� �
�� (�
�

 ��
�Q �

� �
�� (�
�

(�
� � ��Q �� 


�Q ��

　これより� �OS � ��O �S  (�
� �

��O �� 
� ��O �� � (�
� �

�O� 
� �O�

　　　　　　　　　　� (�
� �

��O �� �� 
�� � ��O �� �� �
�� ……①

　　　　　ここで、����なので� ��O �� �� 
�� !��

　　　　　また、������なので、 ��O �� �� 
�� !�

　　　　　よって、①は正となり、 �OS ! ��O �S

　　　　　すなわち、 �S ! �S

　　　　　　　　　　 �S ! �S

　　　　　　　　　　 �S ! �S

　　　　　　　　　　　…

　　　　　　　　　　 ��O �S ! ��O �S

　　　　　　　　　　 �OS ! ��O �S

これらの辺々を加えると、 �S � �S � �S �……� �OS ! �S � �S � �S �……� ��O �S � ��O �S

　　　　　　　　　　　　　　　　　　　　　　　! �S � �S � �S �……� ��O �S

ここで、 �S  ��なので　　 �S � �S � �S �……� �OS ! �S � �S � �S � �S �……� ��O �S

すなわち　 �S � �S � �S � �S �……� ��O �S � �S � �S � �S �……� �OS

よって、与式は成り立つ。

�ⅱ���1�が奇数すなわち1 �O�����O 
 ������… �のとき

　� �
�1 �

�
 O��より　左辺 

 P �

� �
�1 �
�

&  ��P �S �����S �S �S …… ��O �S

　� �
1

�
 Oより　右辺 

 P �

� �
1
�

&  �PS �����S �S �S …… �OS



　�ⅰ��と同様にして

　　　　　　　　　　 �S ! �S

　　　　　　　　　　 �S ! �S

　　　　　　　　　　 �S ! �S

　　　　　　　　　　　…

　　　　　　　　　　 �OS ! ��O �S

これらの辺々を加えると、 �S � �S � �S �……� �OS ! �S � �S � �S �……� ��O �S

ここで、 �S  ��なので　　 �S � �S � �S �……� �OS ! �S � �S � �S � �S �……� ��O �S

すなわち　 �S � �S � �S � �S �……� ��O �S � �S � �S � �S �……� �OS

よって、与式は成り立つ。

※正直、����は自力では解けなかった。多分、 QS �は単調減少関数なのだと思うが、その証

明自体が非常に困難を極める。要するに、上記の解法にあるように

QS  
(�
� �

�Q �

� �
�� (�
�

 ��
�Q �

� �
�� (�
�

(�
� � ��Q �� 


�Q �� �の��は負の数であり、こ

れをQ�の関数とみなして、微分して単調減少を示そうかとも思ったが、Q�を奇数、偶数と

場合分けをせねばならず、さらに、偶数から奇数、奇数から偶数への橋渡しをせねばなら

ず、かなり面倒である。それで、漸化式から� QS ! �Q �S を導き出そうと思ったが、これも

いろいろな壁に阻まれてしまった。数学的帰納法を使ったとしても、最終的には� QS

! �Q �S を導き出さなければならず、力ずくで QS �を微分しようかな、と思ったが、どうも

やる気がしなかった。

　上記にある �OS ! ��O �S �の関係だけで全てを証明しようというアイデアは、大手予備校の

代々木ゼミナールの解答速報を拝借したものである。いろいろな予備校のサイトを見たが、

代々木ゼミナールの解法が最高であった。老体に鞭を打って考えあぐね、最後には投げ出

そうかな、と思ってた矢先にこの解法を見て、まさに地獄に一条の蜘蛛の糸を見るような

気になって、本当にうなってしまった。これを解いた人は誰なのか非常に気になるが、こ

の場を借りて心から感謝したい。ありがとうございました。最後に、ちょっと悔しいので、

3\WKRQを使って QS �のグラフを描いて終わりにする。
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上図は QS  
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��Q ������……����　のグラフで、縦軸が

QS �、横軸がQ�であり、各点を直線で結んでいる。このグラフを見ても QS �はQ���で単調

減少になっており、 QS ! �Q �S ��Q 
�� �であるが、漸化式の関係を使って証明できそうな気

が今でもしているが、取りあえず、3\WKRQ�のグラフを表示して、名古屋大学前期数学

（理系）の解説は終わりにする。


